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1 Introduction: What is Relativity?

Until the end of the 19th century it was believed that Newton’s three Laws of Motion
and the associated ideas about the properties of space and time provided a basis on
which the motion of matter could be completely understood. However, the formulation
by Maxwell of a unified theory of electromagnetism disrupted this comfortable state of
affairs – the theory was extraordinarily successful, yet at a fundamental level it seemed to
be inconsistent with certain aspects of the Newtonian ideas of space and time. Ultimately,
a radical modification of these latter concepts, and consequently of Newton’s equations
themselves, was found to be necessary. It was Albert Einstein who, by combining the
experimental results and physical arguments of others with his own unique insights, first
formulated the new principles in terms of which space, time, matter and energy were to
be understood. These principles, and their consequences constitute the Special Theory
of Relativity. Later, Einstein was able to further develop this theory, leading to what
is known as the General Theory of Relativity. Amongst other things, this latter theory
is essentially a theory of gravitation. The General Theory will not be dealt with in this
course.

Relativity (both the Special and General) theories, quantum mechanics, and thermody-
namics are the three major theories on which modern physics is based. What is unique
about these three theories, as distinct from say the theory of electromagnetism, is their
generality. Embodied in these theories are general principles which all more specialized or
more specific theories are required to satisfy. Consequently these theories lead to general
conclusions which apply to all physical systems, and hence are of enormous power, as well
as of fundamental significance. The role of relativity appears to be that of specifying the
properties of space and time, the arena in which all physical processes take place.

It is perhaps a little unfortunate that the word ‘relativity’ immediately conjures up
thoughts about the work of Einstein. The idea that a principle of relativity applies to
the properties of the physical world is very old: it certainly predates Newton and Galileo,
but probably not as far back as Aristotle. What the principle of relativity essentially
states is the following:

The laws of physics take the same form in all frames of reference moving with
constant velocity with respect to one another.

This is a statement that can be given a precise mathematical meaning: the laws of physics
are expressed in terms of equations, and the form that these equations take in different
reference frames moving with constant velocity with respect to one another can be cal-
culated by use of transformation equations – the so-called Galilean transformation in the
case of Newtonian relativity. The principle of relativity then requires that the transformed
equations have exactly the same form in all frames of reference, in other words that the
physical laws are the same in all frames of reference.

This statement contains concepts which we have not developed, so perhaps it is best at
this stage to illustrate its content by a couple of examples. First consider an example
from ‘everyday experience’ – a train carriage moving smoothly at a constant speed on a
straight and level track – this is a ‘frame of reference’. Suppose that in this carriage is a
pool table. If you were a passenger on this carriage and you decided to play a game of
pool, one of the first things that you would notice is that in playing any shot, you would
have to make no allowance whatsoever for the motion of the train. Any judgement of
how to play a shot as learned by playing the game back home, or in the local pool hall,
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would apply equally well on the train, irrespective of how fast the train was moving. If
we consider that what is taking place here is the innate application of Newton’s Laws to
describe the motion and collision of the pool balls, we see that no adjustment has to be
made to these laws when playing the game on the moving train.

This argument can be turned around. Suppose the train windows are covered, and the
carriage is well insulated so that there is no immediate evidence to the senses as to whether
or not the train is in motion. It might nevertheless still be possible to determine if the
train is in motion by carrying out an experiment, such as playing a game of pool. But,
as described above, a game of pool proceeds in exactly the same way as if it were being
played back home – no change in shot-making is required. There is no indication from
this experiment as to whether or not the train is in motion. There is no way of knowing
whether, on pulling back the curtains, you are likely to see the countryside hurtling by,
or to find the train sitting at a station. In other words, what the principle of relativity
means is that it is not possible to determine whether or not the train carriage is moving.

This idea can be extended to encompass other laws of physics. To this end, imagine a
collection of spaceships with engines shut off all drifting through space. Each space ship
constitutes a ‘frame of reference’, an idea that will be better defined later. On each of
these ships a series of experiments is performed: a measurement of the half life of uranium,
a measurement of the outcome of the collision of two billiard balls, an experiment in
thermodynamics, e.g. a measurement of the specific heat of a substance, a measurement
of the speed of light radiated from a nearby star: any conceivable experiment. If the
results of these experiments are later compared, what is found is that in all cases (within
experimental error) the results are identical. In other words, the various laws of physics
being tested here yield exactly the same results for all the spaceships, in accordance with
the principle of relativity.

Thus, quite generally the principle of relativity means that it is not possible, by considering
any physical process whatsoever, to determine whether or not one or the other of the
spaceships is ‘in motion’. The results of all the experiments are the same on all the space
ships, so there is nothing that definitely singles out one space ship over any other as being
the one that is stationary. It is true that from the point of view of an observer on any one
of the space ships that it is the others that are in motion. But the same statement can be
made by an observer in any space ship. All that we can say for certain is that the space
ships are in relative motion, and not claim that one of them is ‘truly’ stationary, while the
others are all ‘truly’ moving.

This principle of relativity was accepted (in somewhat simpler form i.e. with respect to
the mechanical behaviour of bodies) by Newton and his successors, even though Newton
postulated that underlying it all was ‘absolute space’ which defined the state of absolute
rest. He introduced the notion in order to cope with the difficulty of specifying with
respect to what an accelerated object is being accelerated. To see what is being implied
here, imagine space completely empty of all matter except for two masses joined by a
spring. Now suppose that the arrangement is rotated, that is, they undergo acceleration.
Naively, in accordance with our experience, we would expect that the masses would pull
apart. But why should they? How do the masses ‘know’ that they are being rotated?
There are no ‘signposts’ in an otherwise empty universe that would indicate that rotation
is taking place. By proposing that there existed an absolute space, Newton was able to
claim that the masses are being accelerated with respect to this absolute space, and hence
that they would separate in the way expected for masses in circular motion. But this
was a supposition made more for the convenience it offered in putting together his Laws
of motion, than anything else. It was an assumption that could not be substantiated, as
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Newton was well aware – he certainly felt misgivings about the concept! Other scientists
were more accepting of the idea, however, with Maxwell’s theory of electromagnetism for
a time seeming to provide some sort of confirmation of the concept.

One of the predictions of Maxwell’s theory was that light was an electromagnetic wave
that travelled with a speed c ≈ 3 × 108 ms−1. But relative to what? Maxwell’s theory
did not specify any particular frame of reference for which light would have this speed.
A convenient resolution to this problem was provided by an already existing assumption
concerning the way light propagated through space. That light was a form of wave motion
was well known – Young’s interference experiments had shown this – but the Newtonian
world view required that a wave could not propagate through empty space: there must
be present a medium of some sort that vibrated as the waves passed, much as a string
vibrates as a wave travels along it. The proposal was therefore made that space was filled
with a substance known as the ether whose purpose was to be the medium that vibrated
as the light waves propagated through it. It was but a small step to then propose that
this ether was stationary with respect to Newton’s absolute space, thereby solving the
problem of what the frame of reference was in which light had the speed c. Furthermore,
in keeping with the usual ideas of relative motion, the thinking then was then that if you
were to travel relative to the ether towards a beam of light, you would measure its speed
to be greater than c, and less than c if you travelled away from the beam. It then came
as an enormous surprise when it was found experimentally that this was not, in fact, the
case.

This discovery was made by Michelson and Morley, who fully accepted the ether theory,
and who, quite reasonably, thought it would be a nice idea to try to measure how fast
the earth was moving through the ether. They found to their enormous surprise that the
result was always zero irrespective of the position of the earth in its orbit around the sun
or, to put it another way, they measured the speed of light always to be the same value
c whether the light beam was moving in the same direction or the opposite direction to
the motion of the earth in its orbit. In our spaceship picture, this is equivalent to all
the spaceships obtaining the same value for the speed of light radiated by the nearby
star irrespective of their motion relative to the star. This result is completely in conflict
with the rule for relative velocities, which in turn is based on the principle of relativity
as enunciated by Newton and Galileo. Thus the independence of the speed of light on
the motion of the observer seems to take on the form of an immutable law of nature, and
yet it is apparently inconsistent with the principle of relativity. Something was seriously
amiss, and it was Einstein who showed how to get around the problem, and in doing so he
was forced to conclude that space and time had properties undreamt of in the Newtonian
world picture.

All these ideas, and a lot more besides, have to be presented in a much more rigorous
form. The independence of results of the hypothetical experiments described above on the
state of motion of the experimenters can be understood at a fundamental level in terms
of the mathematical forms taken by the laws of nature. All laws of nature appear to have
expression in mathematical form, so what the principle of relativity can be understood as
saying is that the equations describing a law of nature take the same mathematical form in
all inertial frames of reference. It is this latter perspective on relativity that is developed
here, and an important starting point is the notion of a frame of reference.
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2 Frames of Reference

Newton’s laws are, of course, the laws which determine how matter moves through space
as a function of time. So, in order to give these laws a precise meaning we have to specify
how we measure the position of some material object, a particle say, and the time at which
it is at that position. We do this by introducing the notion of a frame of reference.

2.1 A Framework of Rulers and Clocks

First of all we can specify the positions of the particle in space by determining its coor-
dinates relative to a set of mutually perpendicular axes X, Y , Z. In practice this could
be done by choosing our origin of coordinates to be some convenient point and imagining
that rigid rulers – which we can also imagine to be as long as necessary – are laid out from
this origin along these three mutually perpendicular directions. The position of the par-
ticle can then be read off from these rulers, thereby giving the three position coordinates
(x, y, z) of the particle1.

We are free to set up our collection of rulers anywhere we like e.g. the origin could be
some fixed point on the surface of the earth and the rulers could be arranged to measure
x and y positions horizontally, and z position vertically. Alternatively we could imagine
that the origin is a point on a rocket travelling through space, or that it coincides with
the position of a subatomic particle, with the associated rulers being carried along with
the moving rocket or particle2.

By this means we can specify where the particle is. In order to specify when it is at
a particular point in space we can stretch our imagination further and imagine that in
addition to having rulers to measure position, we also have at each point in space a clock,
and that these clocks have all been synchronized in some way. The idea is that with these
clocks we can tell when a particle is at a particular position in space simply by reading off
the time indicated by the clock at that position.

According to our ‘common sense’ notion of time, it would appear sufficient to have only
one set of clocks filling all of space. Thus, no matter which set of moving rulers we use
to specify the position of a particle, we always use the clocks belonging to this single vast
set to tell us when a particle is at a particular position. In other words, there is only one
‘time’ for all the position measuring set of rulers. This time is the same time independent
of how the rulers are moving through space. This is the idea of universal or absolute time
due to Newton. However, as Einstein was first to point out, this idea of absolute time
is untenable, and that the measurement of time intervals (e.g. the time interval between
two events such as two supernovae occurring at different positions in space) will in fact
differ for observers in motion relative to each other. In order to prepare ourselves for this
possibility, we shall suppose that for each possible set of rulers – including those fixed
relative to the ground, or those moving with a subatomic particle and so on, there are a
different set of clocks. Thus the position measuring rulers carry their own set of clocks
around with them. The clocks belonging to each set of rulers are of course synchronized
with respect to each other. Later on we shall see how this synchronization can be achieved.

1Probably a better construction is to suppose that space is filled with a scaffolding of rods arranged in
a three dimensional grid.

2If, for instance, the rocket has its engines turned on, we would be dealing with an accelerated frame
of reference in which case more care is required in defining how position (and time) can be measured in
such a frame. Since we will ultimately be concerning ourselves with non-accelerated observers, we will not
concern ourselves with these problems. A proper analysis belongs to General Relativity.
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The idea now is that relative to a particular set of rulers we are able to specify where a
particle is, and by looking at the clock (belonging to that set of rulers) at the position of
the particle, we can specify when the particle is at that position. Each possible collection
of rulers and associated clocks constitutes what is known as a frame of reference or a
reference frame.

X

Y

Z

Figure 1: Path of a particle as measured in a frame of reference. The clocks indicate the times at
which the particle passed the various points along the way.

In many texts reference is often made to an observer in a frame of reference whose job
apparently is to make various time and space measurements within this frame of reference.
Unfortunately, this conjures up images of a person armed with a stopwatch and a pair
of binoculars sitting at the origin of coordinates and peering out into space watching
particles (or planets) collide, stars explode and so on. This is not the sense in which the
term observer is to be interpreted. It is important to realise that measurements of time are
made using clocks which are positioned at the spatial point at which an event occurs. Any
centrally positioned observer would have to take account of the time of flight of a signal
to his or her observation point in order to calculate the actual time of occurrence of the
event. One of the reasons for introducing this imaginary ocean of clocks is to avoid such
a complication. Whenever the term observer arises it should be interpreted as meaning
the reference frame itself, except in instances in which it is explicitly the case that the
observations of an isolated individual are under consideration.

If, as measured by one particular set of rulers and clocks (i.e. frame of reference) a particle
is observed to be at a position at a time t (as indicated by the clock at (x, y, z)), we can
summarize this information by saying that the particle was observed to be at the point
(x, y, z, t) in space-time. The motion of the particle relative to this frame of reference
would be reflected in the particle being at different positions (x, y, z) at different times
t. For instance in the simplest non-trivial case we may find that the particle is moving
at constant speed v in the direction of the positive X axis, i.e. x = vt. However, if
the motion of the same particle is measured relative to a frame of reference attached to
say a butterfly fluttering erratically through the air, the positions (x′, y′, z′) at different
times t′ (given by a series of space time points ) would indicate the particle moving on an
erratic path relative to this new frame of reference. Finally, we could consider the frame
of reference whose spatial origin coincides with the particle itself. In this last case, the
position of the particle does not change since it remains at the spatial origin of its frame
of reference. However, the clock associated with this origin keeps on ticking so that the
particle’s coordinates in space-time are (0, 0, 0, t) with t the time indicated on the clock at
the origin, being the only quantity that changes. If a particle remains stationary relative
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to a particular frame of reference, then that frame of reference is known as the rest frame
for the particle.

Of course we can use frames of reference to specify the where and when of things other
than the position of a particle at a certain time. For instance, the point in space-time
at which an explosion occurs, or where and when two particles collide etc., can also be
specified by the four numbers (x, y, z, t) relative to a particular frame of reference. In fact
any event occurring in space and time can be specified by four such numbers whether it
is an explosion, a collision or the passage of a particle through the position (x, y, z) at the
time t. For this reason, the four numbers (x, y, z, t) together are often referred to as an
event.

2.2 Inertial Frames of Reference and Newton’s First Law of Motion

Having established how we are going to measure the coordinates of a particle in space and
time, we can now turn to considering how we can use these ideas to make a statement
about the physical properties of space and time. To this end let us suppose that we have
somehow placed a particle in the depths of space far removed from all other matter. It
is reasonable to suppose that a particle so placed is acted on by no forces whatsoever3.
The question then arises: ‘What kind of motion is this particle undergoing?’ In order to
determine this we have to measure its position as a function of time, and to do this we have
to provide a reference frame. We could imagine all sorts of reference frames, for instance
one attached to a rocket travelling in some complicated path. Under such circumstances,
the path of the particle as measured relative to such a reference frame would be very
complex. However, it is at this point that an assertion can be made, namely that for
certain frames of reference, the particle will be travelling in a particularly simple fashion
– a straight line at constant speed. This is something that has not and possibly could
not be confirmed experimentally, but it is nevertheless accepted as a true statement about
the properties of the motion of particles in the absences of forces. In other words we can
adopt as a law of nature, the following statement:

There exist frames of reference relative to which a particle acted on by no forces
moves in a straight line at constant speed.

This essentially a claim that we are making about the properties of spacetime. It is also
simply a statement of Newton’s First Law of Motion. A frame of reference which has this
property is called an inertial frame of reference, or just an inertial frame.

Gravity is a peculiar force in that if a reference frame is freely falling under the effects of
gravity, then any particle also freely falling will be observed to be moving in a straight line
at constant speed relative to this freely falling frame. Thus freely falling frames constitute
inertial frames of reference, at least locally.

3 The Galilean Transformation

The above argument does not tell us whether there is one or many inertial frames of
reference, nor, if there is more than one, does it tell us how we are to relate the coordinates

3It is not necessary to define what we mean by force at this point. It is sufficient to presume that if
the particle is far removed from all other matter, then its behaviour will in no way be influenced by other
matter, and will instead be in response to any inherent properties of space (and time) in its vicinity.
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of an event as observed from the point-of-view of one inertial reference frame to the
coordinates of the same event as observed in some other. In establishing the latter, we
can show that there is in fact an infinite number of inertial reference frames. Moreover,
the transformation equations that we derive are then the mathematical basis on which it
can be shown that Newton’s Laws are consistent with the principle of relativity. To derive
these transformation equations, consider an inertial frame of reference S and a second
reference frame S′ moving with a velocity vx relative to S.

 4'-5"  1'-5" 
X

Y

Z

vxt′ x′
X ′

Y ′

Z ′

‘event’

vx

S′S

Figure 2: A frame of reference S′ is moving with a velocity vx relative to the inertial frame S.
An event occurs with spatial coordinates (x, y, z) at time t in S and at (x′, y′, z′) at time t′ in S′.

Let us suppose that the clocks in S and S′ are set such that when the origins of the two
reference frames O and O′ coincide, all the clocks in both frames of reference read zero
i.e. t = t′ = 0. According to ‘common sense’, if the clocks in S and S′ are synchronized
at t = t′ = 0, then they will always read the same, i.e. t = t′ always. This, once again, is
the absolute time concept introduced in Section 2.1. Suppose now that an event of some
kind, e.g. an explosion, occurs at a point (x′, y′, z′, t′) according to S′. Then, by examining
Fig. (2), according to S, it occurs at the point

x = x′ + vxt′, y = y′, z = z′

and at the time t = t′
(1)

These equations together are known as the Galilean Transformation, and they tell us how
the coordinates of an event in one inertial frame S are related to the coordinates of the
same event as measured in another frame S′ moving with a constant velocity relative to
S.

Now suppose that in inertial frame S, a particle is acted on by no forces and hence is
moving along the straight line path given by:

r = r0 + ut (2)

where u is the velocity of the particle as measured in S. Then in S′, a frame of reference
moving with a velocity v = vxi relative to S, the particle will be following a path

r′ = r0 + (u− v)t′ (3)

where we have simply substituted for the components of r using Eq. (1) above. This last
result also obviously represents the particle moving in a straight line path at constant
speed. And since the particle is being acted on by no forces, S′ is also an inertial frame,
and since v is arbitrary, there is in general an infinite number of such frames.
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Incidentally, if we take the derivative of Eq. (3) with respect to t, and use the fact that
t = t′, we obtain

u′ = u− v (4)

which is the familiar addition law for relative velocities.

It is a good exercise to see how the inverse transformation can be obtained from the above
equations. We can do this in two ways. One way is simply to solve these equations so as to
express the primed variables in terms of the unprimed variables. An alternate method, one
that is mpre revealing of the underlying symmetry of space, is to note that if S′ is moving
with a velocity vx with respect to S, then S will be moving with a velocity −vx with
respect to S′ so the inverse transformation should be obtainable by simply exchanging the
primed and unprimed variables, and replacing vx by −vx. Either way, the result obtained
is

x′ = x− vxt

y′ = y

z′ = z

t′ = t.


(5)

4 Newtonian Force and Momentum

Having proposed the existence of a special class of reference frames, the inertial frames of
reference, and the Galilean transformation that relates the coordinates of events in such
frames, we can now proceed further and study whether or not Newton’s remaining laws
of motion are indeed consistent with the principle of relativity. FIrst we need a statement
of these two further laws of motion.

4.1 Newton’s Second Law of Motion

It is clearly the case that particles do not always move in straight lines at constant speeds
relative to an inertial frame. In other words, a particle can undergo acceleration. This
deviation from uniform motion by the particle is attributed to the action of a force. If
the particle is measured in the inertial frame to undergo an acceleration a, then this
acceleration is a consequence of the action of a force F where

F = ma (6)

and where the mass m is a constant characteristic of the particle and is assumed, in
Newtonian dynamics, to be the same in all inertial frames of reference. This is, of course, a
statement of Newton’s Second Law. This equation relates the force, mass and acceleration
of a body as measured relative to a particular inertial frame of reference.

As we indicated in the previous section, there are in fact an infinite number of inertial
frames of reference and it is of considerable importance to understand what happens to
Newton’s Second Law if we measure the force, mass and acceleration of a particle from
different inertial frames of reference. In order to do this, we must make use of the Galilean
transformation to relate the coordinates (x, y, z, t) of a particle in one inertial frame S say
to its coordinates (x′, y′, z′, t′) in some other inertial frame S′. But before we do this, we
also need to look at Newton’s Third Law of Motion.
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4.2 Newton’s Third Law of Motion

Newton’s Third Law, namely that to every action there is an equal and opposite reaction,
can also be shown to take the same form in all inertial reference frames. This is not done
directly as the statement of the Law just given is not the most useful way that it can be
presented. A more useful (and in fact far deeper result) follows if we combine the Second
and Third Laws, leading to the law of conservation of momentum which is

In the absence of any external forces, the total momentum of a system is con-
stant.

It is then a simple task to show that if the momentum is conserved in one inertial frame
of reference, then via the Galilean transformation, it is conserved in all inertial frames of
reference.

5 Newtonian Relativity

By means of the Galilean Transformation, we can obtain an important result of Newtonian
mechanics which carries over in a much more general form to special relativity. We shall
illustrate the idea by means of an example involving two particles connected by a spring.
If the X coordinates of the two particles are x1 and x2 relative to some reference frame S
then from Newton’s Second Law the equation of motion of the particle at x1is

m1
d2x1

dt2
= −k(x1 − x2 − l) (7)

where k is the spring constant, l the natural length of the spring, and m1 the mass of the
particle. If we now consider the same pair of masses from the point of view of another
frame of reference S′ moving with a velocity vx relative to S, then

x1 = x′1 + vxt′ and x2 = x′2 + vxt′ (8)

so that
d2x1

dt2
=

d2x′1
dt′2

(9)

and
x2 − x1 = x′2 − x′1. (10)

Thus, substituting the last two results into Eq. (7) gives

m1
d2x′1
dt′2

= −k(x′1 − x′2 − l) (11)

Now according to Newtonian mechanics, the mass of the particle is the same in both
frames i.e.

m1 = m′
1 (12)

where m′
1 is the mass of the particle as measured in S′. Hence

m′
1

d2x′1
dt′2

= −k(x′1 − x′2 − l) (13)

which is exactly the same equation as obtained in S, Eq. (7) except that the variables x1

and x2 are replaced by x′1 and x′2. In other words, the form of the equation of motion
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derived from Newton’s Second Law is the same in both frames of reference. This result
can be proved in a more general way than for than just masses on springs, and we are
lead to conclude that the mathematical form of the equations of motion obtained from
Newton’s Second Law are the same in all inertial frames of reference.

Continuing with this example, we can also show that momentum is conserved in all inertial
reference frames. Thus, in reference frame S, the total momentum is

m1ẋ1 + m2ẋ2 = P = constant. (14)

Using Eq. (8) above we then see that in S′ the total momentum is

P ′ = m′
1ẋ

′
1 + m′

2ẋ
′
2 = m1ẋ1 + m2ẋ2 − (m1 + m2)vx = P − (m1 + m2)vx (15)

which is also a constant (but not the same constant as in S – it is not required to be the
same constant!!). The analogous result to this in special relativity plays a very central
role in setting up the description of the dynamics of a system.

The general conclusion we can draw from all this is that:

Newton’s Laws of motion are identical in all inertial frames of reference.

This is the Newtonian (or Galilean) principle of relativity, and was essentially accepted
by all physicists, at least until the time when Maxwell put together his famous set of
equations. One consequence of this conclusion is that it is not possible to determine
whether or not a frame of reference is in a state of motion by any experiment involving
Newton’s Laws. At no stage do the Laws depend on the velocity of a frame of reference
relative to anything else, even though Newton had postulated the existence of some kind
of ”absolute space” i.e. a frame of reference which defined the state of absolute rest, and
with respect to which the motion of anything could be measured. The existence of such a
reference frame was taken for granted by most physicists, and for a while it was thought
to be have been uncovered following on from the appearance on the scene of Maxwell’s
theory of electromagnetism.

6 Maxwell’s Equations and the Ether

The Newtonian principle of relativity had a successful career till the advent of Maxwell’s
work in which he formulated a mathematical theory of electromagnetism which, amongst
other things, provided a successful physical theory of light. Not unexpectedly, it was
anticipated that the equations Maxwell derived should also obey the above Newtonian
principle of relativity in the sense that Maxwell’s equations should also be the same in
all inertial frames of reference. Unfortunately, it was found that this was not the case.
Maxwell’s equations were found to assume completely different forms in different inertial
frames of reference. It was as if F = ma worked in one frame of reference, but in another,
the law had to be replaced by some bizarre equation like F′ = m(a′)2a′! In other words it
appeared as if Maxwell’s equations took a particularly simple form in one special frame of
reference, but a quite complicated form in another moving relative to this special reference
frame. For instance, the wave equation for light assumed the simple form

∂2E

∂x2
− 1

c2

∂2E

∂t2
= 0 (16)
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in this ‘special frame’ S, which is the equation for waves moving at the speed c. Under
the Galilean transformation, this equation becomes

∂2E′

∂x′2
− 1

c2

∂2E′

∂t′2
− 2vx

c2

∂2E′

∂x′∂t′
− vx

c2

∂

∂x′

[
vx

∂E′

∂x′

]
= 0 (17)

for a frame S′ moving with velocity vx relative to S. This ‘special frame’ S was assumed
to be the one that defined the state of absolute rest as postulated by Newton, and that
stationary relative to it was a most unusual entity, the ether. The ether was a substance
that was supposedly the medium in which light waves were transmitted in a way something
like the way in which air carries sound waves. Consequently it was believed that the
behaviour of light, in particular its velocity, as measured from a frame of reference moving
relative to the ether would be different from its behaviour as measured from a frame
of reference stationary with respect to the ether. Since the earth is following a roughly
circular orbit around the sun, then it follows that a frame of reference attached to the
earth must at some stage in its orbit be moving relative to the ether, and hence a change
in the velocity of light should be observable at some time during the year. From this, it
should be possible to determine the velocity of the earth relative to the ether. An attempt
was made to measure this velocity. This was the famous experiment of Michelson and
Morley. Simply stated, they argued that if light is moving with a velocity c through the
ether, and the earth was moving with a velocity v relative to the ether, then light should
be observed to be travelling with a velocity c′ = c − v at some stage in the Earth’s orbit
relative to the Earth. We can see this by simply solving the wave equation in S:

E(x, t) = E(x− ct) (18)

where we are supposing that the wave is travelling in the positive X direction. If we now
apply the Galilean Transformation to this expression, we get, for the field E′(x′, t′) as
measured in S′, the result

E′(x′, t′) = E(x, t) = E(x′ + vxt′ − ct′) = E(x′ − (c− vx)t′) (19)

i.e. the wave is moving with a speed c− vx which is just the Galilean Law for the addition
of velocities given in Eq. (4).

Needless to say, on performing their experiment – which was extremely accurate – they
found that the speed of light was always the same. Obviously something was seriously
wrong. Their experiments seemed to say that the earth was not moving relative to the
ether, which was manifestly wrong since the earth was moving in a circular path around
the sun, so at some stage it had to be moving relative to the ether. Many attempts
were made to patch things up while still retaining the same Newtonian ideas of space
and time. Amongst other things, it was suggested that the earth dragged the ether in
its immediate vicinity along with it. It was also proposed that objects contracted in
length along the direction parallel to the direction of motion of the object relative to the
ether. This suggestion, due to Fitzgerald and elaborated on by Lorentz and hence known
as the Lorentz-Fitzgerald contraction, ‘explained’ the negative results of the Michelson-
Morley experiment, but faltered in part because no physical mechanism could be discerned
that would be responsible for the contraction. The Lorentz-Fitzgerald contraction was
to resurface with a new interpretation following from the work of Einstein. Thus some
momentary successes were achieved, but eventually all these attempts were found to be
unsatisfactory in various ways. It was Einstein who pointed the way out of the impasse, a
way out that required a massive revision of our concepts of space, and more particularly,
of time.
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7 Einstein’s Postulates

The difficulty that had to be resolved amounted to choosing amongst three alternatives:

1. The Galilean transformation was correct and something was wrong with Maxwell’s
equations.

2. The Galilean transformation applied to Newtonian mechanics only.

3. The Galilean transformation, and the Newtonian principle of relativity based on
this transformation were wrong and that there existed a new relativity principle
valid for both mechanics and electromagnetism that was not based on the Galilean
transformation.

The first possibility was thrown out as Maxwell’s equations proved to be totally successful
in application. The second was unacceptable as it seemed something as fundamental as
the transformation between inertial frames could not be restricted to but one set of natural
phenomena i.e. it seemed preferable to believe that physics was a unified subject. The
third was all that was left, so Einstein set about trying to uncover a new principle of
relativity. His investigations led him to make two postulates:

1. All the laws of physics are the same in every inertial frame of reference. This postu-
late implies that there is no experiment whether based on the laws of mechanics or
the laws of electromagnetism from which it is possible to determine whether or not
a frame of reference is in a state of uniform motion.

2. The speed of light is independent of the motion of its source.

Einstein was inspired to make these postulates4 through his study of the properties of
Maxwell’s equations and not by the negative results of the Michelson-Morley experiment,
of which he was apparently only vaguely aware. It is this postulate that forces us to
reconsider what we understand by space and time.

One immediate consequence of these two postulates is that the speed of light is the same
in all inertial frames of reference. We can see this by considering a source of light and two
frames of reference, the first frame of reference S′ stationary relative to the source of light
and the other, S, moving relative to the source of light.

4Einstein also tacitly made three further assumptions

Homogeneity: The intrinsic properties of empty space are the same everywhere and for all time. In
other words, the properties of the rulers and clocks do not depend on their positions in (empty)
space, nor do they vary over time.

Spatial Isotropy: The intrinsic properties of space is the same in all directions. In other words, the
properties of the rulers and clocks do not depend on their orientations in empty space.

No Memory: The extrinsic properties of the rulers and clocks may be functions of their current states
of motion, but not of their previous states of motion.
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S

S′

vx

Figure 3: A source of light observed from two inertial frames S and S′ where S′ is moving with
a velocity vx with respect to S.

By postulate 2, S measures the speed of light to be c. However, from postulate 1, this
situation is indistinguishable from that depicted in Fig. (4)

S

S′

−vx

−vx

Figure 4: The same situation as in Fig. (3) except from the point of view of S′.

and by postulate 2, must also measure the speed of light to be c. In other words, both
reference frames S and measure the speed of light to be c.

Before proceeding further with the consequences of these two rather innocent looking
postulates, we have to be more precise about how we go about measuring time in an
inertial frame of reference.

8 Clock Synchronization in an Inertial Frame

Recall from Section 2.1 that in order to measure the time at which an event occurred at
a point in space, we assumed that all of space was filled with clocks, one for each point in
space. Moreover, there were a separate set of clocks for each set of rulers so that a frame
of reference was defined both by these rulers and by the set of clocks which were carried
along by the rulers. It was also stated that all the clocks in each frame of reference were
synchronized in some way, left unspecified. At this juncture it is necessary to be somewhat
more precise about how this synchronization is to be achieved. The necessity for doing
this lies in the fact that we have to be very clear about what we are doing when we are
comparing the times of occurrence of events, particularly when the events occur at two
spatially separate points.
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The procedure that can be followed to achieve the synchronization of the clocks in one
frame of reference is quite straightforward. We make use of the fact that the speed of
light is precisely known, and is assumed to be always a constant everywhere in free space
no matter how it is generated or in which direction it propagates through space. The
synchronization is then achieved in the following way. Imagine that at the spatial origin of
the frame of reference we have a master clock, and that at some instant t0 = 0 indicated
by this clock a spherical flash of light is emitted from the source.

 2'-4" 

X

Y

Z

Spherical flash of light

d

P (x, y, z)

Figure 5: A spherical flash of light emitted at t = 0 propagates out from the origin, reaching the
point P after a time d/c. The clock at P is then set to read t = d/c.

The flash of light will eventually reach the point P (x, y, z) situated a distance d from the
origin O. When this flash reaches P , the clock at that position is adjusted to read t = d/c.
And since d2 = x2 + y2 + z2, this means that

x2 + y2 + z2 = c2t2 (20)

a result made use of later in the derivation of the Lorentz equations.

This procedure is followed for all the clocks throughout the frame of reference. By this
means, the clocks can be synchronized. A similar procedure applies for every frame of
reference with its associated clocks.

It should be pointed out that it is not necessary to use light to do this. We could have
used any collection of objects whose speed we know with great precision. However it is a
reasonable choice to use light since all evidence indicates that light always travels with the
same speed c everywhere in space. Moreover, when it comes to comparing observations
made in different frames of reference, we can exploit the fact the speed of light always
has the same value through postulate 2 above. We do not know as yet what happens
for any other objects. In fact, as a consequence of Einstein’s second postulate we find
that whereas the clocks in one reference frame have all been synchronized to everyone’s
satisfaction in that frame of reference, it turns out that they are not synchronized with
respect to another frame of reference moving with respect to the first. The meaning and
significance of this lack of synchronization will be discussed later.

We are now in a position to begin to investigate how the coordinates of an event as
measured in one frame of reference are related to the coordinates of the event in another
frame of reference. This relationship between the two sets of coordinates constitutes the
so-called Lorentz transformation.
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9 Lorentz Transformation

In deriving this transformation, we will eventually make use of the constancy of the speed
of light, but first we will derive the general form that the transformation law must take
purely from kinematic/symmetry considerations. The starting point is to consider two
inertial frames S and S′ where S′ is moving with a velocity vx relative to S.

Let us suppose that when the two origins coincide, the times on the clocks in each frame
of reference are set to read zero, that is t = t′ = 0. Now consider an event that occurs at
the point (x, y, z, t) as measured in S. The same event occurs at (x′, y′, z′, t′) in S′. What
we are after is a set of equations that relate these two sets of coordinates.

We are going to assume a number of things about the form of these equations, all of which
can be fully justified, but which we will introduce more or less on the basis that they seem
intuitively reasonable.

First, because the relative motion of the two reference frames is in the X direction, it is
reasonable to expect that all distances measured at right angles to the X direction will be
the same in both S and S′, i.e.5

y = y′ and z = z′. (21)

We now assume that (x, t) and (x′, t′) are related by the linear transformations

x′ = Ax + Bt (22)

t′ = Cx + Dt. (23)

Why linear? Assuming that space and time is homogeneous tells us that a linear relation
is the only possibility6. What it amounts to saying is that it should not matter where in
space we choose our origin of the spatial coordinates to be, not should it matter when we
choose the orgin of time, i.e. the time that we choose to set as t = 0.

Now consider the origin O′ of S′. This point is at x′ = 0 which, if substituted into Eq. (22)
gives

Ax + Bt = 0 (24)

where x and t are the coordinates of O′ as measured in S, i.e. at time t the origin O′ has
the X coordinate x, where x and t are related by Ax + Bt = 0. This can be written

x

t
= −B

A
(25)

but x/t is just the velocity of the origin O′ as measured in S. This origin will be moving
at the same speed as the whole reference frame, so then we have

−B

A
= vx (26)

which gives B = −vxA which can be substituted into Eq. (22) to give

x′ = A(x− vxt). (27)
5If we assumed, for instance, that z = kz′, then it would also have to be true that z′ = kz if we reverse

the roles of S and S′, which tells us that k2 = 1 and hence that k = ±1. We cannot have z = −z′ as the
coordinate axes are clearly not ‘inverted’, so we must have z = z′.

6In general, x′ will be a function of x and t, i.e. x′ = f(x, t) so that we would have dx′ = fxdx + ftdt
where fx is the partial derivatve of f with respect to x, and similarly for ft. Homogeniety then means
that these partial derivatives are constants. In other words, a small change in x and t produces the same
change in x′ no matter where in space or time the change takes place.
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If we now solve Eq. (22) and Eq. (23) for x and t we get

x =
Dx′ + vxAt′

AD −BC
(28)

t =
At′ − Cx′

AD −BC
. (29)

If we now consider the origin O of the reference frame S, that is, the point x = 0, and
apply the same argument as just used above, and noting that O will be moving with a
velocity −vx with respect to S′, we get

−vxA

D
= −vx. (30)

Comparing this with Eq. (26) we see that

A = D (31)

and hence the transformations Eq. (28) and Eq. (29) from S′ to S will be, after substituting
for D and B:

x =
A(x′ + vxt′)
A2 + vxAC

t =
A(t′ − (C/A)x′)

A2 + vxAC

 (32)

which we can compare with the original transformation from S to S′

x′ = A(x− vxt)

t′ = A(t + (C/A)x).

 (33)

Any difference between the two transformation laws can only be due to the fact that the
velocity of S′ with respect to S is vx and the velocity of S with respect to S′ is −vx

7. So,
given the transformation laws that give the S coordinates in terms of the S′ coordinates,
Eq. (32), the corresponding equations going the other way, Eq. (33), can be obtained
simply swapping the primed and unprimed variables, and change the sign of vx. If that is
to be the case, then the factor A2 + vxAC must be unity i.e.

A2 + vxAC = 1 (34)

and it also suggests that C/A is proportional to vx to guarantee the change in sign that
occurs in passing from the expression for t to the one for t′. Thus,we have

A2(1 + vx(C/A)) = 1 (35)

from which we get

A =
1√

1 + vxC/A
. (36)

7It is the assumed isotropy of space that comes into play here: there is no difference in the transformation
laws relating the coordinates of an event in a reference frame to those of the event in a frame moving to
the left or to the right, apart from a change in the sign of vx.
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If we now use the clue that C/A is proportional to vx to try a substitution C/A = −vx/V 2

where V is a quantity with the units of velocity yet to be determined, we have

A =
1√

1− (vx/V )2
. (37)

so that finally the transformation laws become

x′ =
x− vxt√

1− (vx/V )2

y′ = y

z′ = z

t′ =
t− (vx/V 2)x√

1− (vx/V )2
.


(38)

This is a remarkable and very general result that depends purely on the assumed homo-
geneity and isotropy of space. At no stage have we mentioned light, or any other physical
quantity for that matter, and yet we have been able to pin down the transformation laws
relating coordinate systems for two different inertial frames of reference at least as far as
there being only one undetermined quantity left, namely V . More information is needed
to determine its value, but if we were to choose V = ∞, then we find that these transfor-
mation equations reduce to the Galilean transformation Eq. (1)! However, we have yet to
make use of Einstein’s second proposal. In doing so we are able to determine V , and find
that V has an experimentally determinable, finite value.

To this end, let us suppose that when the two origins coincide, the clocks at O and O′

both read zero, and also suppose that at that instant, a flash of light is emitted from
the coincident points O and O′. In the frame of reference S this flash of light will be
measured as lying on a spherical shell centred on O whose radius is growing at the speed
c. However, by the second postulate, in the frame of reference S′, the flash of light will
also be measured as lying on a spherical shell centred on O′ whose radius is also growing
at the speed c. Thus, in S, if the spherical shell passes a point P with spatial coordinates
(x, y, z) at time t, then by our definition of synchronization we must have:

x2 + y2 + z2 = c2t2

i.e.
x2 + y2 + z2 − c2t2 = 0. (39)

The flash of light passing the point P in space at time t then defines an event with space-
time coordinates (x, y, z, t). This event will have a different set of coordinates (x′, y′, z′, t′)
relative to the frame of reference S′ but by our definition of synchronization these coordi-
nates must also satisfy:

x′2 + y′2 + z′2 − c2t′2 = 0. (40)

We want to find how the two sets of coordinates (x, y, z, t) and (x′, y′, z′, t′) are related in
order for both Eq. (39) and Eq. (40) to hold true. But we know quite generally that these
coordinates must be related by the transformation laws Eq. (38) obtained above. If we
substitute these expressions into Eq. (40) we get[

1− (cvx/V 2)2
]
x2 +

[
1− (vx/V )2

]
y2 +

[
1− (vx/V )2

]
z2

−
[
1− (vx/c)2

]
(ct)2 − 2vx

[
1− (c/V )2

]
xt = 0. (41)
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This equation must reduce to Eq. (39). Either by working through the algebra, or simply
by trial and error, it is straightforward to confirm that this requires V = c, i.e. the general
transformation Eq. (38) with V = c, guarantees that the two spheres of light are expanding
at the same rate, that is at the speed c, in both inertial frames of reference. Introducing
a quantity γ defined by

γ =
1√

1− (vx/c)2
(42)

we are left with the final form of the transformation law consistent with light always being
observed to be travelling at the speed c in all reference frames:

x′ = γ(x− vxt)

y′ = y

z′ = z

t′ = γ
(
t− (vx/c2)x

)
.


(43)

These are the equations of the Lorentz transformation. We can find the inverse transfor-
mation either by solving Eq. (43) for x, y, z, and t in terms of x′, y′, z′, and t′, or else by
simply recognizing, as was mentioned above in the derivation of this transformation, that
if S′ is moving with velocity vx relative to S, then S is moving with velocity −vx relative
to S′. Consequently, all that is required is to exchange the primed and unprimed variables
and change the sign of vx in Eq. (43). The result by either method is

x = γ(x′ + vxt′)

y = y′

z = z′

t = γ
(
t′ + (vx/c2)x′

)
.


(44)

These equations were first obtained by Lorentz who was looking for a mathematical trans-
formation that left Maxwell’s equations unchanged in form. However he did not assign
any physical significance to his results. It was Einstein who first realized the true meaning
of these equations, and consequently, with this greater insight, was able to derive them
without reference at all to Maxwell’s equations. The importance of his insight goes to the
heart of relativity. Although the use of a flash of light played a crucial role in deriving the
transformation equations, the final result simply establishes a connection between the two
sets of space-time coordinates associated with a given event, this event being the passage
of a flash of light past the point (x, y, z) at time t, as measured in S, or (x′, y′, z′) at time
t′, as measured in S′. The transformation equations therefore represent a property that
space and time must have in order to guarantee that light will always be observed to have
the same speed c in all inertial frames of reference. But given that these transformation
equations represent an intrinsic property of space and time, it can only be expected that
the behaviour of other material objects, which may have nothing whatsoever to do with
light, will also be influenced by this fundamental property of space and time. This is the
insight that Einstein had, that the Lorentz transformation was saying something about
the properties of space and time, and the consequent behaviour that matter and forces
must have in order to be consistent with these properties.
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Later we will see that the speed of light acts as an upper limit to how fast any material
object can travel, be it light or electrons or rocket ships. In addition, we shall see that
anything that travels at this speed c will always be observed to do so from all frames of
reference. Light just happens to be one of the things in the universe that travels at this
particular speed. Subatomic particles called neutrinos also apparently travel at the speed
of light, so we could have formulated our arguments above on the basis of an expanding
sphere of neutrinos! The constant c therefore represents a characteristic property of space
and time, and only less significantly is it the speed at which light travels.

Two immediate conclusions can be drawn from the Lorentz Transformation. Firstly, sup-
pose that , vx > c i.e. that S′ is moving relative to S at a speed greater than the speed of
light. In that case we find that γ2 < 0 i.e. γ is imaginary so that both position and time
in Eq. (43) become imaginary. However position and time are both physical quantities
which must be measured as real numbers. In other words, the Lorentz transformation
becomes physically meaningless if vx > c. This immediately suggests that it is a physical
impossibility for a material object to attain a speed greater than c relative to any reference
frame S. The frame of reference in which such an object would be stationary will then also
be moving at the speed vx, but as we have just seen, in this situation the transformation
law breaks down. We shall see later how the laws of dynamics are modified in special
relativity, one of the consequences of this modification being that no material object can
be accelerated to a speed greater than c8.

Secondly, we can consider the form of the Lorentz Transformation in the mathematical
limit vx << c. We find that γ ≈ 1 so that Eq. (43) becomes the equations of the Galilean
Transformation, Eq. (1). (Though this also requires that the x dependent term in the time
transformation equation to be negligible, which it will be over small enough distances).
Thus, at low enough speeds, any unusual results due to the Lorentz transformation would
be unobservable.

Perhaps the most startling aspect of the Lorentz Transformation is the appearance of a
transformation for time. The result obtained earlier for the Galilean Transformation agrees
with, indeed it was based on, our ‘common sense’ notion that time is absolute i.e. that
time passes in a manner completely independent of the state of motion of any observer.
This is certainly not the case with the Lorentz Transformation which leads, as we shall
see, to the conclusion that moving clocks run slow. This effect, called time dilation, and
its companion effect, length contraction will now be discussed.

9.1 Length Contraction

The first of the interesting consequences of the Lorentz Transformation is that length no
longer has an absolute meaning: the length of an object depends on its motion relative to
the frame of reference in which its length is being measured. Let us consider a rod moving
with a velocity vx relative to a frame of reference S, and lying along the X axis. This rod
is then stationary relative to a frame of reference S′ which is also moving with a velocity
vx relative to S.

8In principle there is nothing wrong with having an object that is initially travelling with a speed greater
than c. In this case, c acts as a lower speed limit. Particles with this property, called tachyons, have be
postulated to exist, but they give rise to problems involving causality (i.e. cause and effect) which make
their existence doubtful.
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Figure 6: A rod of length at rest in reference frame S′ which is moving with a velocity vx with
respect to another frame S.

As the rod is stationary in S′, the ends of the rod will have coordinates x′1 and x′2 which
remain fixed as functions of the time in S′. The length of the rod, as measured in S′ is
then

l0 = x′2 − x′1 (45)

where l0 is known as the proper length of the rod i.e. l0 is its length as measured in a
frame of reference in which the rod is stationary. Now suppose that we want to measure
the length of the rod as measured with respect to S. In order to do this, we measure the
X coordinates of the two ends of the rod at the same time t, as measured by the clocks in
S. Let x2 and x1 be the X coordinates of the two ends of the rod as measured in S at this
time t. It is probably useful to be aware that we could rephrase the preceding statement
in terms of the imaginary synchronized clocks introduced in Section 2.1 and Section 8 by
saying that ‘the two clocks positioned at x2 and x1 both read t when the two ends of the
rod coincided with the points x2 and x1.’ Turning now to the Lorentz Transformation
equations, we see that we must have

x′1 = γ(x1 − vxt))

x′2 = γ(x2 − vxt).

 (46)

We then define the length of the rod as measured in the frame of reference S to be

l = x2 − x1 (47)

where the important point to be re-emphasized is that this length is defined in terms of
the positions of the ends of the rods as measured at the same time t in S. Using Eq. (46)
and Eq. (47) we find

l0 = x′2 − x′1 = γ(x2 − x1) = γl (48)

which gives for l
l = γ−1l0 =

√
1− (vx/c)2l0. (49)

But for vx < c √
1− (vx/c)2 < 1 (50)

so that
l < l0. (51)

Thus the length of the rod as measured in the frame of reference S with respect to which
the rod is moving is shorter than the length as measured from a frame of reference S′
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relative to which the rod is stationary. A rod will be observed to have its maximum length
when it is stationary in a frame of reference. The length so-measured, l0 is known as its
proper length.

This phenomenon is known as the Lorentz-Fitzgerald contraction. It is not the consequence
of some force ‘squeezing’ the rod, but it is a real physical phenomenon with observable
physical effects. Note however that someone who actually looks at this rod as it passes by
will not see a shorter rod. If the time that is required for the light from each point on the
rod to reach the observer’s eye is taken into account, the overall effect is that of making
the rod appear as if it is rotated in space.

9.2 Time Dilation

Perhaps the most unexpected consequence of the Lorentz transformation is the way in
which our ‘commonsense’ concept of time has to be drastically modified. Consider a clock
C ′ placed at rest in a frame of reference S′ at some point x′ on the X axis. Suppose once
again that this frame is moving with a velocity vx relative to some other frame of reference
S. At a time t′1 registered by clock C ′ there will be a clock C1 in the S frame of reference
passing the position of C ′:

X

X ′

Z
Z ′

Clock C1 reads t1

Clock C ′ reads t′1

vx

x′1

S
S′

Figure 7: Clock C ′ stationary in S′ reads t′1 when it passes clock C1 stationary in S, at which
instant it reads t1.

The time registered by C1 will then be given by the Lorentz Transformation as

t1 = γ(t′1 + vxx′/c2). (52)

Some time later, clock C ′ will read the time t′2 at which instant a different clock C2 in S
will pass the position x′1 in S′.
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X

x′1

vx

Z

Clock C2 reads t2

Clock C ′ reads t′2

X ′

Z ′

Figure 8: Clock C ′ stationary in S′ reads t′2 when it passes clock C2 stationary in S, at which
instant C2 reads t2.

This clock C2 will read
t2 = γ(t′2 + vxx′/c2). (53)

Thus, from Eq. (52) and Eq. (53) we have

∆t = t2 − t1 = γ(t′2 − t′1) = γ∆t′. (54)

Once again, since

γ =
1√

1− (vx/c)2
> 1 if vx < c (55)

we have
∆t > ∆t′. (56)

In order to interpret this result, suppose that ∆t′ is the time interval between two ‘ticks’
of the clock C ′. Then according to the clocks in S, these two ‘ticks’ are separated by a
time interval ∆t which, by Eq. (56) is > ∆t′. Thus the time interval between ‘ticks’ is
longer, as measured by the clocks in S, than what it is measured to be in S′. In other
words, from the point of view of the frame of reference S, the clock (and all the clocks in
S′) are running slow. It appears from S that time is passing more slowly in S′ than it is in
S. This is the phenomenon of time dilation. A clock will be observed to run at its fastest
when it is stationary in a frame of reference. The clock is then said to be measuring proper
time.

This phenomenon is just as real as length contraction. One of its best known consequences
is that of the increase in the lifetime of a radioactive particle moving at a speed close to
that of light. For example, it has been shown that if the lifetime of a species of radioactive
particle is measured while stationary in a laboratory to be T ′, then the lifetime of an
identical particle moving relative to the laboratory is found to be given by T = γT ′, in
agreement with Eq. (54) above.

Another well known consequence of the time dilation effect is the so-called twin or clock
paradox. The essence of the paradox can be seen if we first of all imagine two clocks
moving relative to each other which are synchronized when they pass each other. Then,
in the frame of reference of one of the clocks, C say, the other clock will be measured as
running slow, while in the frame of reference of clock C ′, the clock C will also be measured
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to be running slow9. This is not a problem until one of the clocks does a U-turn in space
(with the help of rocket propulsion, say) and returns to the position of the other clock.
What will be found is that the clock that ‘came back’ will have lost time compared to the
other. Why should this be so, as each clock could argue (if clocks could argue) that from
its point of view it was the other clock that did the U-turn? The paradox can be resolved
in many ways. The essence of the resolution, at least for the version of the clock paradox
being considered here, is that there is not complete symmetry between the two clocks.
The clock that turns back must have undergone acceleration in order to turn around. The
forces associated with this acceleration will only be experienced by this one clock so that
even though each clock could argue that it was the other that turned around and came
back, it was only one clock that experienced an acceleration. Thus the two clocks have
different histories between meetings and it is this asymmetry that leads to the result that
the accelerated clock has lost time compared to the other. Of course, we have not shown
how the turning around process results in this asymmetry: a detailed analysis is required
and will not be considered here.

9.3 Simultaneity

Another consequence of the transformation law for time is that events which occur si-
multaneously in one frame of reference will not in general occur simultaneously in any
other frame of reference. Thus, consider two events 1 and 2 which are simultaneous in
S i.e. t1 = t2, but which occur at two different places x1 and x2. Then, in S′, the time
interval between these two events is

t′2 − t′1 = γ(t2 − vxx2/c2)− γ(t1 − vxx1/c2)

= γ(x1 − x2)vx/c2

6= 0 as x1 6= x2. (57)

Here t′1 is the time registered on the clock in S′ which coincides with the position x1 in S
at the instant t1 that the event 1 occurs and similarly for t′2. Thus events which appear
simultaneous in S are not simultaneous in S′. In fact the order in which the two events 1
and 2 are found to occur in will depend on the sign of x1 − x2 or vx. It is only when the
two events occur at the same point (i.e. x1 = x2) that the events will occur simultaneously
in all frames of reference.

9.4 Transformation of Velocities (Addition of Velocities)

Suppose, relative to a frame S, a particle has a velocity

u = uxi + uyj + uzk (58)

where ux = dx/dt etc. What we require is the velocity of this particle as measured in the
frame of reference S′ moving with a velocity vx relative to S. If the particle has coordinate
x at time t in S, then the particle will have coordinate x′ at time t′ in S′ where

x = γ()x′ + vxt′) and t = γ(t′ + vxx′/c2). (59)
9This appears to be paradoxical – how can both clocks consider the other as going slow? It should be

borne in mind that the clocks C and C′ are not being compared directly against one another, rather the
time on each clock is being compared against the time registered on the collection of clocks that it passes
in the other reference frame
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If the particle is displaced to a new position x + dx at time t + dt in S, then in S′ it will
be at the position x′ + dx′ at time t′ + dt′ where

x + dx = γ
(
x′ + dx′ + vx(t′ + dt′)

)
t + dt = γ

(
t′ + dt′ + vx(x′ + dx′)/c2)

)
and hence

dx = γ(dx′ + vxdt′)

dt = γ(dt′ + vxdx′/c2)

so that

ux =
dx

dt
=

dx′ + vxdt′

dt′ + vxdx′/c2

=
dx′

dt′ + vx

1 + vx
c2

dx′

dt′

=
u′x + vx

1 + vxu′x/c2
(60)

where u′x = dx′/dt′ is the X velocity of the particle in the S′ frame of reference. Similarly,
using y = y′ and z = z′ we find that

uy =
u′y

γ(1 + vxu′x/c2)
(61)

uz =
u′z

γ(1 + vxu′x/c2)
. (62)

The inverse transformation follows by replacing vx → −vx interchanging the primed and
unprimed variables. The result is

u′x =
ux − vx

1− vxux/c2

u′y =
uy

γ(1− vxu′x/c2)

u′z =
uz

γ(1− vxu′x/c2)
.


(63)

In particular, if ux = c and uy = uz = 0, we find that

u′x =
c− vx

1− vx/c
= c (64)

i.e., if the particle has the speed c in S, it has the same speed c in S′. This is just a
restatement of the fact that if a particle (or light) has a speed c in one frame of reference,
then it has the same speed c in all frames of reference.
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Now consider the case in which the particle is moving with a speed that is less that c,
i.e. suppose uy = uz = 0 and |ux| < c. We can rewrite Eq. (63) in the form

u′x − c =
ux − c

1− uxvx/c2
− c

=
(c + vx)(c− vx)
c(1− vxux/c2)

. (65)

Now, if S′ is moving relative to S with a speed less than c, i.e. |vx| < c, then along with
|ux| < c it is not difficult to show that the right hand side of Eq. (65) is always negative
i.e.

u′x − c < 0 if |ux| < c, |vx| < c (66)

from which follows u′x < c.

Similarly, by writing

u′x + c =
ux − vx

1− uxvx/c2
+ c

=
(c + ux)(c− vx)
c(1− vxux/c2)

(67)

we find that the right hand side of Eq. (67) is always positive provided |ux| < c and
|vx| < c i.e.

u′x + c > 0 if |ux| < c, |vx| < c (68)

from which follows u′x > −c. Putting together Eq. (66) and Eq. (68) we find that

|u′x| < c if |ux| < c and |vx| < c. (69)

What this result is telling us is that if a particle has a speed less than c in one frame of
reference, then its speed is always less than c in any other frame of reference, provided this
other frame of reference is moving at a speed less than c. As an example, consider two
objects A and B approaching each other, A at a velocity ux = 0.99c relative to a frame of
reference S, and B stationary in a frame of reference S′ which is moving with a velocity
vx = −0.99c relative to S.

X

X ′

Z

S

A

ux = 0.99c

Z ′

S′

B

vx = −0.99c

Figure 9: Object B stationary in reference frame S′ which is moving with a velocity vx = −0.99c

relative to reference frame S. Object A is moving with velocity ux = 0.99c with respect to reference
frame S.
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According to classical Newtonian kinematics, B will measure A as approaching at a speed
of 1.98c. However, according to the Einsteinian law of velocity addition, the velocity of A
relative to B, i.e. the velocity of A as measured in frame S′ is, from Eq. (63)

u′x =
0.99c− (−0.99c)

1 + (0.99)2
= 0.99995c

which is, of course, less than c, in agreement with Eq. (69).

In the above, we have made use of the requirement that all speeds be less than or equal to
c. To understand physically why this is the case, it is necessary to turn to consideration
of relativistic dynamics.

10 Relativistic Dynamics

Till now we have only been concerned with kinematics i.e. what we can say about the
motion of the particle without consideration of its cause. Now we need to look at the laws
that determine the motion i.e. the relativistic form of Newton’s Laws of Motion. Firstly,
Newton’s First Law is accepted in the same form as presented in Section 2.2. However
two arguments can be presented which indicate that Newton’s Second Law may need
revision. One argument only suggests that something may be wrong, while the second
is of a much more fundamental nature. Firstly, according to Newton’s Second Law if we
apply a constant force to an object, it will accelerate without bound i.e. up to and then
beyond the speed of light. Unfortunately, if we are going to accept the validity of the
Lorentz Transformation, then we find that the factor γ becomes imaginary i.e. the factor
γ becomes imaginary. Thus real position and time transform into imaginary quantities in
the frame of reference of an object moving faster than the speed of light. This suggests
that a problem exists, though it does turn out to be possible to build up a mathematical
theory of particles moving at speeds greater than c (tachyons).

The second difficulty with Newton’s Laws arise from the result, derived from the Second
and Third laws, that in an isolated system, the total momentum of all the particles involved
is constant, where momentum is defined, for a particle moving with velocity u and having
mass m, by

p = mu (70)

The question then is whether or not this law of conservation of momentum satisfies Ein-
stein’s first postulate, i.e. with momentum defined in this way, is momentum conserved in
all inertial frames of reference? To answer this, we could study the collision of two bodies

m1 m2

u1

before

u2

m2

m1

u′
2

u′
1

after

Figure 10: Collision between two particles used in discussing the conservation of momentum in
different reference frames.
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and investigate whether or not we always find that

m1u1 + m2u2 = m1u′
1 + m2u′

2 (71)

in every inertial frame of reference. Recall that the velocities must be transformed ac-
cording to the relativistic laws given by Eq. (63). If, however, we retain the Newtonian
principle that the mass of a particle is independent of the frame of reference in which it is
measured (see Section 5) we find that Eq. (71) does not hold true in all frames of reference.
Thus the Newtonian definition of momentum and the Newtonian law of conservation of
momentum are inconsistent with the Lorentz transformation, even though at very low
speeds (i.e. very much less than the speed of light) these Newtonian principles are known
to yield results in agreement with observation to an exceedingly high degree of accuracy.
So, instead of abandoning the momentum concept entirely in the relativistic theory, a
more reasonable approach is to search for a generalization of the Newtonian concept of
momentum in which the law of conservation of momentum is obeyed in all frames of ref-
erence. We do not know beforehand whether such a generalization even exists, and any
proposals that we make can only be justified in the long run by the success or otherwise
of the generalization in describing what is observed experimentally.

10.1 Relativistic Momentum

Any relativistic generalization of Newtonian momentum must satisfy two criteria:

1. Relativistic momentum must be conserved in all frames of reference.

2. Relativistic momentum must reduce to Newtonian momentum at low speeds.

The first criterion must be satisfied in order to satisfy Einstein’s first postulate, while
the second criterion must be satisfied as it is known that Newton’s Laws are correct at
sufficiently low speeds. By a number of arguments, the strongest of which being based
on arguments concerning the symmetry properties of space and time, a definition for the
relativistic momentum of a particle moving with a velocity u as measured with respect to
a frame of reference S, that satisfies these criteria can be shown to take the form

p =
m0u√

1− u2/c2
(72)

where m0 is the rest mass of the particle, i.e. the mass of the particle when at rest, and
which can be identified with the Newtonian mass of the particle. With this form for the
relativistic momentum, Einstein then postulated that, for a system of particles:

The total momentum of a system of particles is always conserved in all frames
of reference, whether or not the total number of particles involved is constant.

The above statement of the law of conservation of relativistic momentum generalized to
apply to situations in which particles can stick together or break up (that is, be created or
annihilated) is only a postulate whose correctness must be tested by experiment. However,
it turns out that the postulate above, with relativistic momentum defined as in Eq. (72)
is amply confirmed experimentally.

We note immediately that, for u << c, Eq. (72) becomes

p = m0u (73)
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which is just the Newtonian form for momentum, as it should be.

It was once the practice to write the relativistic momentum, Eq. (72), in the form

p = mu (74)

where
m =

m0√
1− u2/c2

(75)

which leads us to the idea that the mass of a body (m) increases with its velocity. However,
while a convenient interpretation in certain instances, it is not a recommended way of
thinking in general since the (velocity dependent) mass defined in this way does not always
behave as might be expected. It is better to consider m0 as being an intrinsic property of
the particle (in the same way as its charge would be), and that it is the momentum that
is increased by virtue of the factor in the denominator in Eq. (72).

Having now defined the relativistic version of momentum, we can now proceed towards
setting up the relativistic ideas of force, work, and energy.

10.2 Relativistic Force, Work, Kinetic Energy

All these concepts are defined by analogy with their corresponding Newtonian versions.
Thus relativistic force is defined as

F =
dp
dt

(76)

a definition which reduces to the usual Newtonian form at low velocities. This force will
do work on a particle, and the relativistic work done by F during a small displacement dr
is, once again defined by analogy as

dW = F · dr (77)

The rate at which F does work is then

P = F · u (78)

and we can introduce the notion of relativistic kinetic energy by viewing the work done
by F as contributing towards the kinetic energy of the particle i.e.

P =
dT

dt
= F · u (79)

where T is the relativistic kinetic energy of the particle. We can write this last equation
as

dT

dt
= F · u = u · dp

dt

= u · d

dt

m0u√
1− u2/c2

=
m0u ·

du
dt√

1− u2/c2
+

m0u · uu
du

dt
c2

√
1− u2/c2
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But
u · du

dt
= u

du

dt
(80)

and hence

dT

dt
=

[
m0√

1− u2/c2
+

m0u
2/c2√

(1− u2/c2)3

]
u

du

dt

=
m0√

(1− u2/c2)3
u

du

dt

so that we end up with
dT

dt
=

d

dt

[
m0c

2√
1− u2/c2

]
. (81)

Integrating with respect to t gives

T =
m0c

2√
1− u2/c2

+ constant. (82)

By requiring that T = 0 for u = 0, we find that

T =
m0c

2√
1− u2/c2

−m0c
2. (83)

Interestingly enough, if we suppose that u << c, we find that, by the binomial approxi-
mation10

1√
1− u2/c2

= (1− u2/c2)−
1
2 ≈ 1 +

u2

2c2
(84)

so that
T ≈ m0c

2(1 + u2/c2)−m0c
2 ≈ 1

2m0c
2 (85)

which, as should be the case, is the classical Newtonian expression for the kinetic energy
of a particle of mass moving with a velocity u.

10.3 Total Relativistic Energy

We can now define a quantity E by

E = T + m0c
2 =

m0c
2√

1− u2/c2
. (86)

This quantity E is known as the total relativistic energy of the particle of rest mass m0. It
is all well and good to define such a thing, but, apart from the neatness of the expression,
is there any real need to introduce such a quantity? In order to see the value of defining
the total relativistic energy, we need to consider the transformation of momentum between
different inertial frames S and S′. To this end consider

px =
m0c

2√
1− u2/c2

(87)

where
u =

√
u2

x + u2
y + u2

z (88)

10The binomial approximation is (1 + x)n ≈ 1 + nx if x << 1.
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and where u is the velocity of the particle relative to the frame of reference S. In terms
of the velocity u′ of this particle relative to the frame of reference S′ we can write

ux =
u′x + vx

1 + u′xvx/c2
uy =

u′y
γ(1 + u′xvx/c2)

uz =
u′z

γ(1 + u′xvx/c2)
(89)

with
γ =

1√
1− v2

x/c2
(90)

as before. After a lot of exceedingly tedious algebra, it is possible to show that

√
1− u2/c2 =

√
1− u′2/c2

√
1− v2

x/c2

1 + u′xvx/c2
(91)

so that, using Eq. (89), Eq. (90) and Eq. (91) we find

px =
m0(u′x + vx)√

(1− u′2/c2)(1− v2
x/c2)

= γ

[
m0u

′
x√

1− u′2/c2
+ vx

( m0√
1− u′2/c2

)]

which we can readily write as

px = γ
[
p′x + vx(E′/c2)

]
(92)

i.e. we see appearing the total energy E′ of the particle as measured in S′.

A similar calculation for py and pz yields

py = p′y and pz = p′z (93)

while for the energy E we find

E =
m0c

2√
1− u2/c2

=
m0c

2√
1− u′2/c2

· 1 + u′xvx/c2√
1− v2

x/c2

= γ
[ m0c

2√
1− u′2/c2

+
m0u

′
xvx√

1− u′2/c2

]
which we can write as

E = γ
[
E′ + p′xvx

]
. (94)

Now consider the collision between two particles 1 and 2. Let the X components of
momentum of the two particles be p1x and p2x relative to S. Then the total momentum
in S is

Px = p1x + p2x (95)

where Px is, by conservation of relativistic momentum, a constant, i.e. Px stays the same
before and after any collision between the particles. However

p1x + p2x = γ
(
p′1x + p′2x

)
+ γ

(
E′

1 + E′
2

)
vx/c2 (96)
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where p′1x and p′2x are the X component of momentum of particles 1 and 2 respectively,
while E′

1 and E′
2 are the energies of particles 1 and 2 respectively, all relative to frame of

reference S′. Thus we can write

Px = γP ′
x + γ

(
E′

1 + E′
2

)
vx/c2. (97)

Once again, as momentum is conserved in all inertial frames of reference, we know that
P ′

x is also a constant i.e. the same before and after any collision. Thus we can conclude
from Eq. (97) that

E′
1 + E′

2 = constant (98)

i.e. the total relativistic energy in S′ is conserved. But since S′ is an arbitrary frame
of reference, we conclude that the total relativistic energy is conserved in all frames of
reference (though of course the conserved value would in general be different in different
frames of reference). Since, as we shall see later, matter can be created or destroyed, we
generalize this to read:

The total relativistic energy of a system of particles is always conserved in all
frames of reference, whether or not the total number of particles remains a
constant.

Thus we see that conservation of relativistic momentum implies conservation of total rela-
tivistic energy in special relativity whereas in Newtonian dynamics, they are independent
conditions. Nevertheless, both conditions have to be met in when determining the out-
come of any collision between particles, i.e. just as in Newtonian dynamics, the equations
representing the conservation of energy and momentum have to be employed.

A useful relationship between energy and momentum can also be established. Its value
lies both in treating collision problems and in suggesting the existence of particles with
zero rest mass. The starting point is the expression for energy

E =
m0c

2√
1− u2/c2

(99)

from which we find

E2 =
m2

0c
4

1− u2/c2

=
m0c

4
[
1− u2/c2 + u2/c2

]
1− u2/c2

so that

E2 = m2
0c

4 +
m0u

2

1− u2/c2
· c2. (100)

But
p =

m0u√
1− u2/c2

and hence

p2 = p · p =
m0u

2

1− u2/c2

which can be combined with Eq. (100) to give

E2 = p2c2 + m2
0c

4. (101)

We now will use the above concept of relativistic energy to establish the most famous
result of special relativity, the equivalence of mass and energy.



10 RELATIVISTIC DYNAMICS 33

10.4 Equivalence of Mass and Energy

This represents probably the most important result of special relativity, and gives a deep
physical meaning to the concept of the total relativistic energy E. To see the significance
of E in this regard, consider the breakup of a body of rest mass m0 into two pieces of rest
masses m01 and m02:

m01 m02

u1 u2

m0

Figure 11: Break up of a body of rest mass m0 into two parts of rest masses m01 and m02, moving
with velocities u1 and u2 relative to the rest frame of the original object.

We could imagine that the original body is a radioactive nucleus, or even simply two
masses connected by a coiled spring. If we suppose that the initial body is stationary in
some frame S, and the debris flies apart with velocities u1 and u2 relative to S then, by
the conservation of energy in S:

E = m0c
2 = E1 + E2

=
m01c

2√
1− u2

1/c2

m02c
2√

1− u2
2/c2

so that

(m0 −m01 −m02)c2 =m01c
2
[ 1√

1− u2
1/c2

− 1
]

+ m02c
2
[ 1√

1− u2
2/c2

− 1
]

=T1 + T2 (102)

where T1 and T2 are the relativistic kinetic energies of the two masses produced. Quite
obviously, T1 and T2 > 0 since

1√
1− u2

1/c2
− 1 > 0 (103)

and similarly for the other term and hence

m0 −m01 −m02 > 0 (104)

or
m0 < m01 + m02. (105)
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What this result means is that the total rest mass of the two separate masses is less than
that of the original mass. The difference, ∆m say, is given by

∆m =
T1 + T2

c2
. (106)

We see therefore that part of the rest mass of the original body has disappeared, and an
amount of kinetic energy given by ∆mc2 has appeared. The inescapable conclusion is that
some of the rest mass of the original body has been converted into the kinetic energy of
the two masses produced.

The interesting result is that none of the masses involved need to be travelling at speeds
close to the speed of light. In fact, Eq. (106) can be written, for u1, u2 << c as

∆m =
1
2m01u

2
1 + 1

2m02u
2
2

c2
(107)

so that only classical Newtonian kinetic energy appears. Indeed, in order to measure the
mass loss ∆m, it would be not out of the question to bring the masses to rest in order
to determine their rest masses. Nevertheless, the truly remarkable aspect of the above
conclusions is that it has its fundamental origin in the fact that there exists a universal
maximum possible speed, the speed of light which is built into the structure of space and
time, and this structure ultimately exerts an effect on the properties of matter occupying
space and time, that is, its mass and energy.

The reverse can also take place i.e. matter can be created out of energy as in, for instance,
a collision between particles having some of their energy converted into new particles as
in the proton-proton collision

p + p → p + p + p + p̄

where a further proton and antiproton (p̄) have been produced.

A more mundane outcome of the above connection between energy and mass is that rather
than talking about the rest mass of a particle, it is often more convenient to talk about its
rest energy. A particle of rest mass m0 will, of course, have a rest energy m0c

2. Typically
the rest energy (or indeed any energy) arising in atomic, nuclear, or elementary physics is
given in units of electron volts. One electron volt (eV) is the energy gained by an electron
accelerated through a potential difference of 1 volt i.e.

1 eV = 1.602× 10−19 Joules.

An example of the typical magnitudes of the rest energies of elementary particles is that
of the proton. With a rest mass of mp = 1.67× 10−33 kg, the proton has a rest energy of

mpc
2 = 938.26 MeV.

10.5 Zero Rest Mass Particles

For a single particle, rest mass m0, its momentum p and energy E are related by the
expression:

E2 = p2c2 + M2
0 c4.

This result allows us to formally take the limit of m0 → 0 while keeping E and p fixed.
The result is a relationship between energy and momentum for a particle of zero rest mass.
In this limit, with E, p 6= 0, we have

E = pc = |p|c (108)
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i.e. p is the magnitude of the momentum vector p. If we rearrange Eq. (86) to read

E
√

1− u2/c2

and if we then let m0 → 0 with E 6= 0, we must have√
1− u2/c2 → 0

so that, in the limit of m0 → 0, we find that

u = c. (109)

Thus, if there exists particles of zero rest mass, we see that their energy and momentum
are related by Eq. (108) and that they always travel at the speed of light. Particles with
zero rest mass need not exist since all that we have presented above is a mathematical
argument. However it turns out that they do indeed exist: the photon (a particle of
light) and the neutrino, though recent research in solar physics seems to suggest that the
neutrino may in fact have a non-zero, but almost immeasurably tiny mass. Quantum
mechanics presents us with a relationship between frequency f of a beam of light and the
energy of each photon making up the beam:

E = hf = h̄ω (110)

11 Geometry of Spacetime

The theory of relativity is a theory of space and time and as such is a geometrical theory,
though the geometry of space and time together is quite different from the Euclidean
geometry of ordinary 3-dimensional space. Nevertheless it is found that if relativity is
recast in the language of vectors and ”distances” (or preferably ”intervals”) a much more
coherent picture of the content of the theory emerges. Indeed, relativity is seen to be a
theory of the geometry of the single entity, ‘spacetime’, rather than a theory of space and
time. Furthermore, without the geometrical point-of-view it would be next to impossible
to extend special relativity to include transformations between arbitrary (non-inertial)
frames of reference, which ultimately leads to the general theory of relativity, the theory
of gravitation. In order to set the stage for a discussion of the geometrical properties of
space and time, a brief look at some of the more familiar ideas of geometry, vectors etc in
ordinary three dimensional space is probably useful.

11.1 Geometrical Properties of 3 Dimensional Space

For the present we will not be addressing any specifically relativistic problem, but rather
we will concern ourselves with the issue of fixing the position in space of some arbitrary
point. To do this we could, if we wanted to, imagine a suitable set of rulers so that the
position of a point P can be specified by the three coordinates (x, y, z) with respect to
this coordinate system, which we will call R.
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X Y

Z

P1

P2

∆r

Figure 12: A displacement vector ∆r in space with an arbitrary coordinate system R.

If we then consider two such points P1 with coordinates (x1, y1, z1) and P2 with coordinates
(x2, y2, z2) then the line joining these two points defines a vector ∆r which we can write
in component form with respect to R as

∆r .=

x2 − x1

y2 − y1

z2 − z1


R

(111)

where the subscript R is to remind us that the components are specified relative to the
set of coordinates R. Why do we need to be so careful? Obviously, it is because we could
have, for instance, used a different set of axes R′ which have been translated and rotated
relative to the first:

X

X ′

Y

Y ′

θ

P1

P2

∆r

Figure 13: Displacement vector and two coordinate systems rotated with respect to each other
about Z axis through angle θ. The vector has an existence independent of the choice of coordinate
systems.

In this case the vector ∆r will have new components, but the vector itself will still be the
same vector i.e.

∆r .=

x2 − x1

y2 − y1

z2 − z1


R

.=

x′2 − x′1
y′2 − y′1
z′2 − z′1


R′

(112)

or

∆r .=

∆x
∆y
∆z


R

.=

∆x′

∆y′

∆z′


R′

(113)

So the components themselves are meaningless unless we know with respect to what co-
ordinate system they were determined. In fact, the lack of an absolute meaning of the
components unless the set of axes used is specified means that the vector ∆r is not so
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much ‘equal’ to the column vector as ‘represented by’ the column vectors – hence the use
of the dotted equal sign ‘ .=’ to indicate ‘represented by’.

The description of the vector in terms of its components relative to some coordinate system
is something done for the sake of convenience. Nevertheless, although the components may
change as we change coordinate systems, what does not change is the vector itself, i.e. it
has an existence independent of the choice of coordinate system. In particular, the length
of ∆r and the angles between any two vectors ∆r1 and ∆r2 will be the same in any
coordinate system.

While these last two statements may be obvious, it is important for what comes later
to see that they also follow by explicitly calculating the length and angle between two
vectors using their components in two different coordinate systems. In order to do this
we must determine how the coordinates of ∆r are related in the two different coordinate
systems. We can note that the displacement of the two coordinate systems with respect
to each other is immaterial as we are considering differences between vectors thus we only
need to worry about the rotation which we have, for simplicity, taken to be through an
angle θ about the Z axis (see the above diagram). The transformation between the sets
of coordinates can then be shown to be given, in matrix form, by∆x′

∆y′

∆z′


R′

=

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 ∆x
∆y
∆z


R

(114)

Using this transformation rule, we can show that

(∆x)2 + (∆y)2 + (∆z)2 = (∆x′)2 + (∆y′)2 + (∆z′)2 (115)

where each side of this equation is, obviously, the (distance)2 between the points P1 and
P2. Further, for any two vectors ∆r1 and ∆r2 we find that

∆x1∆x2 + ∆y1∆y2 + ∆z1∆z2 = ∆x′1∆x′2 + ∆y′1∆y′2 + ∆z′1∆z′2 (116)

where each side of the equation is the scalar product of the two vectors i.e. ∆r1 ·∆r2. This
result tells us that the angle between is the same in both coordinate systems. Thus the
transformation Eq. (114) is consistent with the fact that the length and relative orientation
of these vectors is independent of the choice of coordinate systems, as it should be.

It is at this point that we turn things around and say that any quantity that has three
components that transform in exactly the same way as ∆r under a rotation of coordinate
system constitutes a three-vector. An example is force, for whichF ′

x

F ′
y

F ′
z


R′

=

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 Fx

Fy

Fz


R

(117)

for two coordinate systems R and R′ rotated relative to each other by an angle θ about
the Z-axis. Other three-vectors are electric and magnetic fields, velocity, acceleration etc.
Since the transformation matrix in Eq. (117) is identical to that appearing in Eq. (114),
any three-vector is guaranteed to have the same length (i.e. magnitude) and orientation
irrespective of the choice of coordinate system. In other words we can claim that such a
three vector has an absolute meaning independent of the choice of coordinate system used
to determine its components.
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11.2 Space Time Four Vectors

What we do now is make use of the above considerations to introduce the idea of a vector to
describe the separation of two events occurring in spacetime. The essential idea is to show
that the coordinates of an event have transformation properties analogous to Eq. (114)
for ordinary three-vectors, though with some surprising differences. To begin, we will
consider two events E1 and E2 occurring in spacetime. For event E1 with coordinates
(x1, y1, z1, t1) in frame of reference S and (x′1, y

′
1, z

′
1, t

′
1) in S′, these coordinates are related

by the Lorentz transformation which we will write as

ct′1 = γct1 −
γvx

c
x1

x′1 = −γvx

c
ct1 + γx1

y′1 = y1

z′1 = z1


(118)

and similarly for event E2. Then we can write

c∆t′ = c(t′2 − t′1) = γc∆t− γvx

c
∆x

∆x′ = x′2 − x′1 = −γvx

c
c∆t + γ∆x

∆y′ = ∆y

∆z′ = ∆z


(119)

which we can write as
c∆t′

∆x′

∆y′

∆z′


S′

=


γ −γvx/c 0 0

−γvx/c γ 0 0
0 0 1 0
0 0 0 1




c∆t
∆x
∆y
∆z


S

. (120)

It is tempting to interpret this equation as relating the components with respect to a
coordinate system S′ of some sort of ‘vector’, to the components with respect to some
other coordinate system S, of the same vector. We would be justified in doing this if this
‘vector’ has the properties, analogous to the length and angle between vectors for ordinary
three-vectors, which are independent of the choice of reference frame. It turns out that it
is ‘length’ defined as

(∆s)2 = (c∆t)2 −
[
(∆x)2 + (∆y)2 + (∆y)2

]
= (c∆t)2 − (∆r)2 (121)

that is invariant for different reference frames i.e.

(∆s)2 = (c∆t)2−
[
(∆x)2 + (∆y)2 + (∆z)2

]
= (c∆t′)2−

[
(∆x′)2 + (∆y′)2 + (∆z′)2

]
(122)

This invariant quantity ∆s is known as the interval between the two events E1 and E2.
Obviously ∆s is analogous to, but fundamentally different from, the length of a three-
vector in that it can be positive, zero, or negative. We could also talk about the ‘angle’
between two such ‘vectors’ and show that

(c∆t1)(c∆t2)− [∆x1∆x2 + ∆y1∆y2 + ∆z1)∆z2] (123)
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has the same value in all reference frames. This is analogous to the scalar product for
three-vectors. The quantity defined by

∆~s =


c∆t
∆x
∆y
∆z

 (124)

is then understood to correspond to a property of spacetime representing the separation
between two events which has an absolute existence independent of the choice of reference
frame, and is known as a four-vector. In order to distinguish a four-vector from an ordinary
three-vector, a superscript arrow will be used.

As was the case with three-vectors, any quantity which transforms in the same way as ∆~s
is also termed a four-vector. For instance, we have shown that

E′/c = γ(E/c)− γvx

c
px

p′x = −γvx

c
(E/c) + γpx

p′y = py

p′z = pz


(125)

which we can write as
E′/c
p′x
p′y
p′z

 =


γ −γvx/c 0 0

−γvx/c γ 0 0
0 0 1 0
0 0 0 1




E/c
px

py

pz

 (126)

where we see that the same matrix appears on the right hand side as in the transformation
law for ∆~s. This expression relates the components, in two different frames of reference S
and S′, of the four-momentum of a particle. This four-momentum is, of course, by virtue
of this transformation property, also a four-vector. We can note that the (‘length’)2 of
this four-vector is given by

(E/c)2 −
[
p2

x + p2
y + p2

z

]
= (E/c)2 − p2 = (E2 − p2c2)/c2 = m2

0c
2 (127)

where m0 is the rest mass of the particle. This quantity is the same (i.e. invariant) in
different frames of reference.

A further four-vector is the velocity four-vector

~v
.=


dt/dτ
dx/dτ
dy/dτ
dz/dτ

 (128)

where
dτ = ds/c (129)

and is known as the proper time interval. This is the time interval measured by a clock in
its own rest frame as it makes its way between the two events an interval ds apart. The
invariant (‘length’)2 of the velocity four-vector is just c2.
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To emphasize the vector nature of the four-vector quantities introduced above, it is usual
to introduce a more uniform way of naming the components, as follows:

x0 = ct, x1 = x, x2 = y, x3 = z (130)

where the superscript numbers are NOT powers of x. Similarly, for the components of the
momentum four-vector we have

p0 = E/c, p1 = px, p2 = py, p3 = pz. (131)

In terms of these names for the components we can write the Lorentz transformation
equations as

(∆xµ)′ =
3∑

ν=0

Λµ
ν∆xν (132)

where Λµ
ν are the components of the 4 × 4 matrix appearing in Eq. (120) and Eq. (126).

This expression is more usually written in the form

(∆xµ)′ = Λµ
ν∆xν (133)

where the summation over ν is understood. This is the so-called Einstein summation
convention, and it is implied whenever two indices occur in a ‘one up-one down’ combi-
nation in a product. Thus here, as the index ν appears ‘down’ in Λµ

ν and ‘up’ in ∆xν , a
summation over this index is understood.

In terms of this convention, the interval ∆s can be written

(∆s)2 = gµν∆xµ∆ν (134)

where there appears a new term gνµ, the components of a matrix known as the metric
tensor, with the values

g00 = 1, g11 = g22 = g33 = −1 (135)

and all other components zero. Usually the brackets around (∆s)2 are dropped so that
equation Eq. (134) becomes

∆s2 = gµν∆xµ∆xν (136)

It is this metric tensor which plays a central role in general relativity. There the compo-
nents of gµν are not simple constants but rather are functions of the spacetime coordinates
xµ. In this way the curved nature of spacetime is taken into account when determining
the interval between two events.

11.3 Spacetime Diagrams

Till now we have represented a frame of reference S by a collection of clocks and rulers.
An alternative way of doing the same thing is to add a fourth axis, the time axis, ‘at right
angles’ to the X, Y , Z axes. On this time axis we can plot the time t that the clock reads
at the location of an event. Obviously we cannot draw in such a fourth axis, but we can
suppress the Y , Z coordinates for simplicity and draw as in Fig. (14):

ct

x

E(x, t)

Figure 14: An event represented as a point in spacetime.
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This representation is known as a spacetime or Minkowski diagram and on it we can
plot the positions in space and time of the various events that occur in spacetime. In
particular we can plot the motion of a particle through space and time. The curve traced
out is known as the world line of the particle. We can note that the slope of such a world
line must be greater than the slope of the world line of a photon since all material particles
move with speeds less than the speed of light. Some typical world lines are illustrated in
Fig. (15) below.

ct

x

World line of a photon

World line of particle stationary in S

World line of particle moving at speed < c.

Figure 15: Diagram illustrating different kinds of world lines.

The above diagram gives the coordinates of events as measured in a frame of reference S
say. We can also use these spacetime diagrams to illustrate Lorentz transformations from
one frame of reference to another. Unfortunately, due to the peculiar nature of the interval
between two events in spacetime, the new set of axes for some other frame of reference S′

is not a simple rotation of the old axes. It turns out that these new axes are oblique, as
illustrated below, and with increasing speeds of S′ relative to S, these axes close in on the
world line of the photon passing through the common origin.

ct
ct′

x′

x

E

Figure 16: Space and time axes for two different reference frames. The rectilinear axes are for
the reference frame S, the oblique axes those for a reference frame S′ moving with respect to S.

We will not be considering this aspect of spacetime diagrams here. However, what we will
briefly look at is some of the properties of the spacetime interval ∆s that leads to this
strange behaviour.

11.4 Properties of Spacetime Intervals

We saw in the preceding section that one of the invariant quantities is the interval Ds as it
is just the ”length” of the four-vector. As we saw earlier, it is the analogue in spacetime of
the familiar distance between two points in ordinary 3-dimensional space. However, unlike
the ordinary distance between two points, or more precisely (distance)2, which is always
positive (or zero), the interval between two events E1 and E2 i.e. ∆s2, can be positive,
zero, or negative. The three different possibilities have their own names:
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1. ∆s2 < 0: E1 and E2 are separated by a space-like interval.

2. ∆s2 = 0: E1 and E2 are separated by a light-like interval.

3. ∆s2 > 0: E1 and E2 are separated by a time-like interval.

What these different possibilities represent is best illustrated on a spacetime diagram.
Suppose an event O occurs at the spacetime point (0, 0) in some frame of reference S. We
can divide the spacetime diagram into two regions as illustrated in the figure below: the
shaded region lying between the world lines of photons passing through (0, 0), and the
unshaded region lying outside these world lines. Note that if we added a further space
axis, in the Y direction say, the world lines of the photons passing through will lie on a
cone with its vertex at O. This cone is known as the ‘light cone’. Then events such as Q
will lie ‘inside the light cone’, events such as P ‘outside the light cone’, and events such
as R ‘on the light cone’.

O x

ct

Q

R

P

World lines of photons passing through O

Figure 17: The point Q within the light cone (the shaded region) is separated from O by a time-
like interval. A signal travelling at a speed less than c can reach Q from O. The point R on the
edge of the light cone is separated from O by a light-like interval, and a signal moving at the speed
c can reach R from O. The point P is outside the light cone. No signal can reach P from O.

Consider now the sign of ∆s2 between events O and P . Obviously

∆s2 = (c∆t)2 − (∆x)2 < 0 (137)

i.e. all points outside the light cone through O are separated from O by a space-like
interval. Meanwhile, for the event Q we have

∆s2 = (c∆t)2 − (∆x)2 > 0 (138)

i.e. all points inside the light cone through O are separated from O by a time-like interval.
Finally for R we have

∆s2 = (c∆t)2 − (∆x)2 = 0 (139)

i.e. all points on the light cone through O are separated from O by a light-like interval.
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The physical meaning of these three possibilities can be seen if we consider whether or
not the event O can in some way affect the events P , Q, or R. In order for one event
to physically affect another some sort of signal must make its way from one event to the
other. This signal can be of any kind: a flash of light created at O, a massive particle
emitted at O, a piece of paper with a message on it and placed in a bottle. Whatever it
is, in order to be present at the other event and hence to either affect it (or even to cause
it) this signal must travel the distance ∆x in time ∆t, i.e. with speed ∆x/∆t.

We can now look at what this will mean for each of the events P , Q, R. Firstly, for event
P we find from Eq. (137) that ∆x/∆t > c. Thus the signal must travel faster than the
speed of light, which is not possible. Consequently event O cannot affect, or cause event
P . Secondly, for event Q we find from Eq. (138) that ∆x/∆t < c so the signal will travel
at a speed less than the speed of light, so event O can affect (or cause) event Q. Finally,
for R we find from Eq. (139) that ∆x/∆t = c so that O can effect R by means of a signal
travelling at the speed of light. In summary we can write

1. Two events separated by a space-like interval cannot affect one another;

2. Two events separated by a time-like or light-like interval can affect one another.

Thus, returning to our spacetime diagram, we have:

past light cone

future light cone

these events can be affected by O

these events can affect O

events here are
not affected by, or
cannot affect the
event O

O

Figure 18: Future and past light cones of the event O

All the events that can be influenced by O constitute the future of event O while all events
that can influence O constitute the past of event O.


