
Chapter 4

The Two Slit Experiment

This experiment is said to illustrate the essential mystery of quantum mechanics. This

mystery is embodied in the apparent ability of a system to exhibit properties which, from
a classical physics point-of-view, are mutually contradictory. We have already touched
on one such instance, which is that of a particle possessing wave-like properties, or a

wave possessing particle-like properties, otherwise known as wave-particle duality. This
property of physical systems must be mirrored in a mathematical language in terms of

which the behaviour of such systems can be described and in some sense ‘understood’. As
we shall see in later chapters, the two slit experiment is a means by which we arrive at

this new mathematical language.

But first, the experiment, which will be considered in three forms: performed with macro-

scopic particles, with waves, and with electrons. The first two experiments merely show
what we expect to see based on our everyday experience. It is the third which displays
the counterintuitive behaviour of microscopic systems – a peculiar combination of particle

and wave like behaviour which cannot be understood in terms of the concepts of classical
physics. The analysis of the two slit experiment presented below is more or less taken

from Volume III of the Feynman Lectures in Physics.

4.1 An Experiment with Bullets

Imagine an experimental setup in which a machine gun is spraying bullets at a screen in

which there are two narrow openings, or slits. Bullets that pass through the openings will
then strike a further screen, the detection or observation screen, behind the first, and the

point of impact of the bullets on this screen are noted.

Figure 4.1: An erratic machine gun

is firing bullets at a screen containing

two small slits. The bullets accumu-

late on an observation screen, forming

two small piles opposite each slit. The

curve P12(x) represents the probability

density of bullets landing at point x on

the observation screen.
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The first point to note is that the bullets arrive in ‘lumps’, (assuming indestructible
bullets), i.e. every bullet that leaves the gun arrives as a whole somewhere on the detection

screen. The second thing to note is that because the machine gun fires erratically in
direction, then successive bullets will strike different parts of the detection screen. Our

expectations are then that the bullets that make it through one or the other of the two slits
will then strike the observation screen at points that, roughly speaking, will be directly

aligned with the slits, and so will accumulate in two ‘piles’, as indicated in Fig. (4.1).

Now suppose that we perform this experiment with one slit closed. The result will then
be a single pile opposite the open slit, see Fig. (4.2).

(a) (b)
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Figure 4.2: The result of firing bullets at the screen when only one slit is open. The curves P1(x)

and P2(x) give the probability densities of a bullet passing through slit 1 or 2 respectively and

striking ther screen at x.

The result obtained when both slits are opened would then, in some sense, be the result

of simply adding together these two piles.

In order to quantify this last statement, we construct a histogram with which to specify
the way the bullets spread themselves across the observation screen. We start by assuming
that this screen is divided up into boxes of width δx, and then count the number of bullets

that land in each box. Suppose that the number of bullets that make it to the observation
screen is N , where N is a large number. If δN (x) bullets land in the box occupying

the range x to x + δx then we can plot a histogram of δN/Nδx, the fraction of all the
bullets that arrive, per unit length, in each interval over the entire width of the screen.

An illustrative example is given in Fig. (4.3) of the histogram obtained when N = 133
bullets strike the observation screen.

If the number of bullets is very large, and the width δx sufficiently small, then the his-
togram will define a smooth curve, P (x) say. What this quantity P (x) represents can be

gained by considering

P (x)δx =
δN

N
(4.1)

which is the fraction of all the bullets that reach the screen that end up in region x to

x + δx. In other words, if N is very large, P (x)δx approximates to the probability that
any given bullet will arrive at the detection screen in the range x to x+ δx. In Fig. (4.3)
the approximate curve for P (x) is also plotted.

We can do the same in the two cases in which one or the other of the two slits are open.

Thus, if slit 1 is open, then we get the curve P1(x) in Fig. (4.3(a)), while if only slit 2 is
open, we get P2(x) such as that in Fig. (4.3(b)). What we are then saying is that if we

leave both slits open, then the result will be just the sum of the two single slit curves, i.e.

P12(x) = P1(x) + P2(x). (4.2)
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In other words, the probability of a bullet striking the screen in some region x to x + δx
when both slits are opened is just the sum of the probabilities of the bullet landing in

region when one slit and then the other is closed. This is all perfectly consistent with
what we understand about the properties and behaviour of macroscopic objects – they

arrive in indestructible lumps, and the probability observed with two slits open is just the
sum of the probabilities with each open individually.

P (x) =
δN

Nδx

x

δx

δN (x)

1

1

2

3

6

11

13

12

9

6

6

7

10

13

12

10

6

3

1

1

(a) (b)

Figure 4.3: Bullets that have passed through the first screen collected in boxes all of the same

size δx. (a) The number of bullets that land in each box is presented. There are δN(x) bullets in

box between x and x+ δx. (b) A histogram is formed from the ratio P (x) ≈ δN/Nδx where N is

the total number of bullets in all the boxes.

4.2 An Experiment with Waves

Now repeat the experiment with waves. For definiteness, let us suppose that the waves

are light waves of wavelength λ. The waves pass through the slits and then impinge on
the screen where we measure the intensity of the waves as a function of position along the

screen.

First perform this experiment with one of the slits open, the other closed. The resultant

intensity distribution is then a curve which peaks behind the position of the open slit,
much like the curve obtained in the experiment using bullets. Call it I1(x), which we

know is just the square of the amplitude of the wave incident at x which originated from
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slit 1. If we deal only with the electric field, and let the amplitude1 of the wave at x at
time t be E(x, t) = E(x) exp(−iωt) in complex notation, then the intensity of the wave at

x will be
I1(x) = |E1(x, t)|2 = E1(x)

2. (4.3)

Close this slit and open the other. Again we get a curve which peaks behind the position
of the open slit. Call it I2(x). These two outcomes are illustrated in Fig. (4.4)

(a) (b)

I1(x)

I2(x)

Figure 4.4: The result of directing waves at a screen when only one slit is open. The curves I1(x)

and I2(x) give the intensities of the waves passing through slit 1 or 2 respectively and reaching the

screen at x. (They are just the central peak of a single slit diffraction pattern.)

Now open both slits. What results is
a curve on the screen I12(x) which os-
cillates between maxima and minima –

an interference pattern, as illustrated
in Fig. (4.5). In fact, the theory of in-

terference of waves tells us that

I12(x) =|E1(x, t) +E2(x, t)|2

=I1(x) + I2(x)

+ 2E1E2 cos
(2πd sinθ

λ

)

=I1(x) + I2(x)

+ 2
√

I1(x)I2(x) cos δ (4.4)

I12(x)

Figure 4.5: The usual two slit interference pattern.

where δ = 2πd sinθ/λ is the phase difference between the waves from the two slits arriving
at point x on the screen at an angle θ to the straight through direction. This is certainly

quite different from what was obtained with bullets where there was no interference term.
Moreover, the detector does not register the arrival of individual lumps of wave energy:

the intensity can have any value at all.

4.3 An Experiment with Electrons

We now repeat the experiment for a third time, but in this case we use electrons. Here

we imagine that there is a beam of electrons incident normally on a screen with the two
slits, with all the electrons having the same energy E and momentum p. The screen
is a fluorescent screen, so that the arrival of each electron is registered as a flash of

1The word ‘amplitude’ is used here to represent the value of the wave at some point in time and space,

and is not used to represent the maximum value of an oscillating wave.
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light – the signature of the arrival of a particle on the screen. It might be worthwhile
pointing out that the experiment to be described here was not actually performed until

the very recent past, and even then not quite in the way described here. Nevertheless, the
conclusions reached are what would be expected on the basis of what is now known about

quantum mechanics from a multitude of other experiments. Thus, this largely hypothetical
experiment (otherwise known as a thought experiment or gedanken experiment) serves to

illustrate the kind of behaviour that quantum mechanics would produce, and in a way
that can be used to establish the basic principles of the theory.

Let us suppose that the electron beam is made so weak that only one electron passes
through the apparatus at a time. What we will observe on the screen will be individual

point-flashes of light, and only one at a time as there is only one electron passing through
the apparatus at a time. In other words, the electrons are arriving at the screen in the

manner of particles, i.e. arriving in lumps. If we close first slit 2 and observe the result
we see a localization of flashes in a region directly opposite slit 1. We can count up the

number of flashes in a region of size δx to give the fraction of flashes that occur in the
range x to x+δx, as in the case of the bullets. As there, we will call the result P1(x). Now

do the same with slit 1 closed and slit 2 opened. The result is a distribution described
by the curve P2(x). These two curves give, as in the case of the bullets, the probabilities

of the electrons striking the screen when one or the other of the two slits are open. But,
as in the case of the bullets, this randomness is not to be seen as all that unexpected –
the electrons making their way from the source through the slits and then onto the screen

would be expected to show evidence of some inconsistency in their behaviour which could
be put down to, for instance, slight variations in the energy and direction of propagation

of each electron as it leaves the source.

Now open both slits. What we notice now is that these flashes do not always occur at
the same place – in fact they appear to occur randomly across the screen. But there is a

pattern to this randomness. If the experiment is allowed to continue for a sufficiently long
period of time, what is found is that there is an accumulation of flashes in some regions
of the screen, and very few, or none, at other parts of the screen. Over a long enough

observation time, the accumulation of detections, or flashes, forms an interference pattern,
a characteristic of wave motion i.e. in contrast to what happens with bullets, we find that,

for electrons, P12(x) �= P1(x) + P2(x). In fact, we obtain a result of the form

P12(x) = P1(x) + P2(x) + 2
√

P1(x)P2(x) cos δ (4.5)

so we are forced to conclude that this is the result of the interference of two waves prop-

agating from each of the slits. One feature of the waves, namely their wavelength, can
be immediately determined from the separation between successive maxima of the inter-
ference pattern. It is found that δ = 2πd sinθ/λ where λ = h/p, and where p is the

momentum of the incident electrons. Thus, these waves can be identified with the de
Broglie waves introduced earlier, represented by the wave function Ψ(x, t).

So what is going on here? If electrons are particles, like bullets, then we can make the

proposal that they go either through slit 1 or through slit 2. The behaviour of the electrons
going through slit 1 should not be affected by whether slit 2 is opened or closed. In other

words, we have to expect that P12(x) = P1(x) + P2(x), but this not what is observed.
So, if we want to retain the mental picture of electrons as particles, we must therefore
conclude that the electrons pass through both slits in some way, because it is only by

‘going through both slits’ that there is any chance of an interference pattern forming. We
could arrange this by supposing that the electrons split up in some way, but then they

will have to subsequently recombine before striking the screen since all that is observed
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is single flashes of light. So what comes to mind is the idea of the electrons executing
complicated paths that, perhaps, involve them looping back through each slit, which is

scarcely believable. The question would have to be asked as to why the electrons execute
such strange behaviour when there are a pair of slits present, but do not seem to when

they are moving in free space. There is no way of understanding the double slit behaviour
in terms of a particle picture only.

We may argue that one way of resolving the issue is to actually monitor the slits, and

look to see when an electron passes through each slit. This could be done, for instance, by
shining a light on each of the slits. If an electron goes through a slit, then it scatters some
of this light, which can be observed with a microscope. We immediately know what slit the

electron passed through, but unfortunately, as a consequence of gaining this knowledge,
what is found is that the interference pattern disappears, and what is seen on the screen

is the same result as for bullets. Thus, by monitoring an explicitly particle characteristic
of the electron, i.e. where it is, the experiment yields the results that would be found with

particles.

In fact, as far as we know any experiment that can be devised – either a real experiment
or a gedanken experiment – that attempts to determine which slit the electron passes
through always results in the disappearance of the interference pattern. In other words, if

we know which slit the electron goes through, then the observed pattern of the screen is
the same as found with bullets: no interference, with P12(x) = P1(x) +P2(x). Confirming

that the electrons definitely go through one slit or another, which is a property that we
expect particles to possess, then results in the electrons behaving as particles do. If we

do not look, then in some sense each electron passes through both slits, resulting in the
formation of an interference pattern, the signature of wave motion. Thus, the electrons

behave either like particles or like waves, depending on what it is that is being observed,
a dichotomy that is known as wave-particle duality.

The fact that any experiment that determines which slit the electron passes through
always results in the disappearance of the interference pattern suggests that there is a

deep physical principle at play here – a law of nature – that overrides any attempt to both
watch where the particles are, and to observe the interference effects. The principle is the

uncertainty principle. It can be argued that pinning down the position of an electron to be
passing through a particular slit amounts to specifying its x position to within ∆x ≈ d/2,

where d is the separation of the slits. But doing so implies that there is an uncertainty in
the sideways momentum of the electron given by ∆px ≈ 2�/d. Since the electrons have a

total momentum p, this amounts to a change in direction through an angle

∆θ =
∆px

p
≈

λ

πd
(4.6)

Since the angular separation between a minimum and a neighbouring maximum of the
diffraction pattern is λ/2d, it is clear that the uncertainty in the sideways momentum

arising from trying to observe through which slit the particle passes is enough to displace
a particle from a maximum into a neighbouring minimum, washing out the interference

pattern.

Using the uncertainty principle in this way does not supply a ‘physical’ explanation for
why the interference pattern washes out, i.e. no physical mechanism appears to be at play,
only the abstract requirements of the uncertainty principle. Nothing is said about how the

position of the particle is pinned down to within an uncertainty ∆x. If this information
is provided, then usually a physical argument, of sorts, that mixes classical and quantum

mechanical ideas can be provided that explains ‘why’ the interference pattern disappears.
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For instance, in the case in which a light beam is shone on the slits, then an argument, due
to Heisenberg, that shows why the interference pattern will be washed out. Essentially,

the scattering of light by an electron also produces a recoil in the motion of the electron:
it will be deflected from its path. If the light is of wavelength λ, then because the smallest

‘package’ that light comes in is a photon of momentum h/λ, a collision between the electron
and the photon could result in a transfer of momentum to the electron of this amount.

But, to pin down the position of the electron to better than the distance d/2, that is, half
the separation between the slits we must have, from the classical theory of optical imaging,

λ < d/2, otherwise we would not know which slit the electron went through. The collision
between the electron and the photon could then result in a transfer of momentum to the

electron of an amount ∆p ≈ 2h/d, and we arrive at the same situation (within a factor
� 1 as in the above analysis based directly on the uncertainty relation Eq. (4.6).

Other experimental ways of determining through which slit the electron passes will also
give a result in agreement with expectations based on the uncertainty principle, i.e. that

the interference pattern will be wiped out. However, the details of the way the physics
conspires to produce this result will differ from one experiment to the other. It is the laws
of quantum mechanics (from which the uncertainty principle follows) that tell us that

the interference pattern must disappear if we measure particle properties of the electrons,
and this is so irrespective of the particular kind of physics involved in the measurement

– the individual physical effects that may be present in one experiment or another are
subservient to the laws of quantum mechanics.

4.4 Probability Amplitudes

First, a summary of what has been seen so far. In the case of waves, we have seen that
the total amplitude of the waves incident on the screen at the point x is given by

E(x, t) = E1(x, t) +E2(x, t) (4.7)

where E1(x, t) and E2(x, t) are the waves arriving at the point x from slits 1 and 2
respectively. The intensity of the resultant interference pattern is then given by

I12(x) =|E(x, t)|2

=|E1(x, t) + E2(x, t)|2

=I1(x) + I2(x) + 2E1E2 cos
(2πd sinθ

λ

)

=I1(x) + I2(x) + 2
√

I1(x)I2(x) cos δ (4.8)

where δ = 2πd sinθ/λ is the phase difference between the waves arriving at the point x
from slits 1 and 2 respectively, at an angle θ to the straight through direction.

The point was then made that the probability density for an electron to arrive at the
observation screen at point x had the same form, i.e. it was given by the same mathematical

expression
P12(x) = P1(x) + P2(x) + 2

√

P1(x)P2(x) cos δ. (4.9)

so we were forced to conclude that this is the result of the interference of two waves

propagating from each of the slits. Moreover, the wavelength of these waves was found
to be given by λ = h/p, where p is the momentum of the incident electrons so that these

waves can be identified with the de Broglie waves introduced earlier, represented by the
wave function Ψ(x, t).



Chapter 4 The Two Slit Experiment 25

Thus, we are proposing that incident on the observation screen is the de Broglie wave
associated with each electron whose total amplitude at point x is given by

Ψ(x, t) = Ψ1(x, t) + Ψ2(x, t) (4.10)

where Ψ1(x, t) and Ψ2(x, t) are the amplitudes at x of the waves emanating from slits 1

and 2 respectively. Further, since P12(x)δx is the probability of an electron being detected
in the region x, x+ δx, we are proposing that

|Ψ(x, t)|2δx ∝ probability of observing an electron in x, x+ δx (4.11)

so that we can interpret Ψ(x, t) as a probability amplitude. This is the famous probability
interpretation of the wave function first proposed by Born on the basis of his own obser-

vations of the outcomes of scattering experiments, as well as awareness of Einstein’s own
inclinations along these lines. Somewhat later, after proposing his uncertainty relation,

Heisenberg made a similar proposal.

There are two other important features of this result that are worth taking note of:

• If the detection event can arise in two different ways (i.e. electron detected after
having passed through either slit 1 or 2) and the two possibilities remain unobserved,

then the total probability of detection is

P = |Ψ1 + Ψ2|
2 (4.12)

i.e. we add the amplitudes and then square the result.

• If the experiment contains a part that even in principle can yield information on
which of the alternate paths were followed, then

P = P1 + P2 (4.13)

i.e. we add the probabilities associated with each path.

What this last point is saying, for example in the context of the two slit experiment, is that,

as part of the experimental set-up, there is equipment that is monitoring through which
slit the particle goes. Even if this equipment is automated, and simply records the result,

say in some computer memory, and we do not even bother to look the results, the fact that
they are still available means that we should add the probabilities. This last point can be

understood if we view the process of observation of which path as introducing randomness
in such a manner that the interference effects embodied in the cos δ are smeared out. In

other words, the cos δ factor – which can range between plus and minus one – will average
out to zero, leaving behind the sum of probability terms.

4.5 The Fundamental Nature of Quantum Probability

The fact that the results of the experiment performed with electrons yields outcomes
which appear to vary in a random way from experiment to experiment at first appears

to be identical to the sort of randomness that occurs in the experiment performed with
the machine gun. In the latter case, the random behaviour can be explained by the fact

that the machine gun is not a very well constructed device: it sprays bullets all over the
place. This seems to suggest that simply by refining the equipment,the randomness can
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be reduced, in principle removing it all together if we are clever enough. At least, that
is what classical physics would lead us to believe. Classical physics permits unlimited

accuracy in the fixing the values of physical or dynamical quantities, and our failure to
live up to this is simply a fault of inadequacies in our experimental technique.

However, the kind of randomness found in the case of the experiment performed with

electrons is of a different kind. It is intrinsic to the physical system itself. We are unable
to refine the experiment in such a way that we can know precisely what is going on.

Any attempt to do so gives rise to unpredictable changes, via the uncertainty principle.
Put another way, it is found that experiments on atomic scale systems (and possibly
at macroscopic scales as well) performed under identical conditions, where everything is

as precisely determined as possible, will always, in general, yield results that vary in a
random way from one run of the experiment to the next. This randomness is irreducible,

an intrinsic part of the physical nature of the universe.

Attempts to remove this randomness by proposing the existence of so-called ‘classical hid-
den variables’ have been made in the past. These variables are supposed to be classical

in nature – we are simply unable to determine their values, or control them in any way,
and hence give rise to the apparent random behaviour of physical systems. Experiments
have been performed that test this idea, in which a certain inequality known as the Bell

inequality, was tested. If these classical hidden variables did in fact exist, then the in-
equality would be satisfied. A number of experiments have yielded results that are clearly

inconsistent with the inequality, so we are faced with having to accept that the physics
of the natural world is intrinsically random at a fundamental level, and in a way that is

not explainable classically, and that physical theories can do no more than predict the
probabilities of the outcome of any measurement.


