
Chapter 6

Particle Spin and the Stern-Gerlach
Experiment

The spin of an elementary particle would appear, on the surface, to be little different from
the spin of a macroscopic object – the image of a microscopic sphere spinning around
some axis comes to mind. However, there is far more going on here than what this simple
picture might suggest. But first, a brief look at what the classical properties are of angular
momentum is needed.

6.1 Classical Spin Angular Momentum

A particle moving through space possesses angular momentum, a vector, defined by

L = r × p (6.1)

where r and p are the position vector and momentum respectively of the particle. This is
sometimes referred to as orbital angular momentum since, in particular, it is an important
consideration in describing the properties of a particle orbiting around some centre of
attraction such as, in the classical picture of an atom, electrons orbiting around an atomic
nucleus. Classically there is no restriction on the magnitude or direction of orbital angular
momentum.

From a classical perspective, as an electron carries a charge, its orbital motion will result
in a tiny current loop which will produce a dipolar magnetic field. The strength of this
dipole field is measured by the magnetic moment µµµ which is related to the orbital angular
momentum by

µLµLµL =
q
2m
L. (6.2)

Thus, the expectation on the basis of this classical picture is that atoms can behave as tiny
little magnets.

The classical idea of spin follows directly from the above considerations. Spin is the
angular momentum we associate with a rotating object such as a spinning golf ball, or
the spinning Earth. The angular momentum of such a body can be calculated by inte-
grating over the contributions to the angular momentum due to the motion of each of the
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infinitesimal masses making up the body. The well known result is that the total angular
momentum or spin S is given by

S = Iωωω (6.3)
where I is the moment of inertia of the body, andωωω is its angular velocity. Spin is a vector
which points along the axis of rotation in a direction determined by the right hand rule:
curl the fingers of the right hand in the direction of rotation and the thumb points in the
direction of S. The moment of inertia is determined by the distribution of mass in the
rotating body relative to the axis of rotation. If the object were a solid uniform sphere of
mass m and radius a, and rotation were about a diameter of the sphere, then the moment
of inertia can be shown to be

I = 2
5Ma

2. (6.4)
If the sphere possesses an electric charge, then the circulation of the charge around the
axis of rotation will constitute a current and hence will give rise to a magnetic field. This
field is a dipole field whose strength is measured by the dipole moment which can be
shown, for a uniformly charged sphere of total charge q, to be given by

µSµSµS =
q
2m
S, (6.5)

exactly the same as in the orbital case.

The point to be made here is that the spinning object is extended in space, i.e. the spinning
sphere example has a non-zero radius. If we try to extend the idea to a point particle by
taking the limit of a → 0 we immediately see that the spin angular momentum must
vanish unless ω is allowed to be infinitely large. If we exclude this last possibility, then
classically a point particle can only have a spin angular momentum of zero and so it cannot
have a magnetic moment. Thus, from the point-of-view of classical physics, elementary
particles such as an electron, which are known to possess spin angular momentum, cannot
be viewed as point objects – they must be considered as tiny spinning spheres. But as far
as it has been possible to determine by high energy scattering experiments, elementary
particles such as the electron behave very much as point particles. Whatever radius they
might have, it is certainly very tiny: experiment suggests it is less than < 10−17 m. Yet they
are found to possess spin angular momentum of a magnitude equal (for the electron) to√
3/!/2 which requires the surface of the particle to be moving at a speed greater than that
of light. This conflict with special relativity makes this classical picture of an elementary
particle as a tiny, rapidly rotating sphere obviously untenable. Quantum mechanics offers
some resolution to the problem, though, as we shall see, it is not in terms of the wave
function.

6.2 Quantum Spin Angular Momentum

Wave mechanics and the wave function describe the properties of a particle moving
through space, giving, as we have seen, information on its position, momentum, energy.
In addition it also provides, via the quantum mechanical version of L = r × p a quantum
description of the orbital angular momentum of a particle, such as that associated with an
electron moving in an orbit around an atomic nucleus. The general results found are that
the magnitude of the angular momentum is limited to the values

L =
√
l(l + 1)!, l = 0, 1, 2, 3, . . . , (6.6)
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which can be looked on as an ‘improved’ version of the result used by Bohr, the one
subsequently ‘justified’ by the de Broglie hypothesis, that is L = n!, Eq. (2.4). The
quantum theory of orbital angular momentum also tells us that any one vector component
of L, Lz say, is restricted to the values

Lz = ml!, ml = −l,−l + 1,−l + 2, . . . l − 2, l − 1, l. (6.7)

This restriction on the possible values of Lz mean that the angular momentum vector can
have only certain orientations in space – a result known as ‘space quantization’.

All this is built around the quantum mechanical version of L = r × p, and so implicitly
is concerned with the angular momentum of a particle moving through space. But a more
general perspective yields some surprises. If special relativity and quantum mechanics
are combined, it is found that even if a particle, a point object, has zero momentum, so
that the orbital angular momentum is zero, its total angular momentum is, in general, not
zero. The only interpretation that can be offered is that this angular momentum is due
to the intrinsic spin of the particle. The possible values for the magnitude S of the spin
angular momentum turn out to be

S =
√
s(s + 1)!, s = 0, 12 , 1,

3
2 , 2 . . . , (6.8)

and any one vector component of S, S z say, is restricted to the values

S z = ml!, ms = −s,−s + 1,−s + 2, . . . s − 2, s − 1, s (6.9)

i.e. similar to orbital angular momentum, but with the significant difference of the appear-
ance of half integer values for the spin quantum number s in addition to the integer values.
This theoretical result is confirmed by experiment. In nature there exist elementary par-
ticles for which s = 1

2 ,
3
2 ,
5
2 . . . such as the electron, proton, neutron, quark (all of which

have spin s = 1
2 ), and more exotic particles of higher half-integer spin, while there exist

many particles with integer spin, the photon, for which s = 1, being the most well-known
example, though because it is a zero rest mass particle, it turns out that there S z = 0 can
only have the values ±1. Of particular interest here is the case of s = 1

2 for which there
are two possible values for S z, that is S z = ± 12!.
Particle spin is what is left after the contribution to the angular momentum due to motion
through space has been removed. It is angular momentum associated with the internal
degrees of freedom of a point particle, whatever they may be, and cannot be described
mathematically in terms of a wave function. It also has no classical analogue: we have
already seen that a point particle cannot have spin angular momentum. Thus, particle spin
is a truly quantum property that cannot be described in the language of wave functions –
a more general mathematical language is required. It was in fact the discovery of particle
spin, in particular the spin of the electron, that lead to the development of a more general
version of quantum mechanics than that implied by wave mechanics.

There is one classical property of angular momentum that does carry over to quantum
mechanics. If the particle is charged, and if it possesses either orbital or spin angular
momentum, then there arises a dipole magnetic field. In the case of the electron, the
dipole moment is found to be given by

µSµSµS = −
e
2me

gS (6.10)
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where me and −e are the mass and charge of the electron, S is the spin angular momentum
of the electron, and g is the so-called gyromagnetic ratio, which classically is exactly equal
to one, but is known (both from measurement and as derived from relativistic quantum
mechanics) to be approximately equal to two for an electron. It is the fact that electrons
possess a magnetic moment that has made it possible to perform experiments involving
the spin of electrons, in a way that reveals the intrinsically quantum properties of spin.

6.3 The Stern-Gerlach Experiment

This experiment, first performed in 1922, has long been considered as the quintessential
experiment that illustrates the fact that the electron possesses intrinsic angular momen-
tum, i.e. spin. It is actually the case that the original experiment had nothing to do with
the discovery that the electron possessed spin: the first proposal concerning the spin of
the electron, made in 1925 by Uhlenbech and Goudsmit, was based on the analysis of
atomic spectra. What the experiment was intended to test was ‘space-quantization’ asso-
ciated with the orbital angular momentum of atomic electrons. The prediction, already
made by the ‘old’ quantum theory that developed out of Bohr’s work, was that the spatial
components of angular momentum could only take discrete values, so that the direction
of the angular momentum vector was restricted to only a limited number of possibilities,
and this could be tested by making use of the fact that an orbiting electron will give rise to
a magnetic moment proportional to the orbital angular momentum of the electron. So, by
measuring the magnetic moment of an atom, it should be possible to determine whether
or not space quantization existed. In fact, the results of the experiment were in agreement
with the then existing (incorrect) quantum theory – the existence of electron spin was not
at that time suspected. Later, it was realized that the interpretation of the results of the
experiment were incorrect, and that what was seen in the experiment was direct evidence
that electrons possess spin. It is in this way that the Stern-Gerlach experiment has subse-
quently been used, i.e. to illustrate the fact that electrons have spin. But it is also valuable
in another way. The simplicity of the results of the experiment (only two possible out-
comes), and the fact that the experiment produces results that are directly evidence of
the laws of quantum mechanics in action makes it an ideal means by which the essential
features of quantum mechanics can be seen and, perhaps, ‘understood’.

The original experimental arrangement took the form of a collimated beam of silver atoms
heading in, say, the y direction, and passing through a non-uniformmagnetic field directed
(mostly) in the z-direction. Assuming the silver atoms possess a non-zero magnetic mo-
ment µµµ, the magnetic field will have two effects. First, the magnetic field will exert a
torque on the magnetic dipole, so that the magnetic moment vector will precess about
the direction of the magnetic field. This will not affect the z component of µµµ, but the x
and y components of µµµ will change with time. Secondly, and more importantly here, the
non-uniformity of the field means that the atoms experience a sideways force given by

Fz = −
∂U
∂z

(6.11)

where U = −µµµ · B = −µzB is the potential energy of the silver atom in the magnetic field.
Thus

Fz = µz
∂B
∂z
. (6.12)
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Different orientations of the magnetic moment vector µµµ will lead to different values of µz,
which in turn will mean that there will be forces acting on the atoms which will differ
depending on the value of µz.
The expectation based on classical physics is that due to random thermal effects in the
oven, the magnetic dipole moment vectors of the atoms will be randomly oriented in
space, so there should be a continuous spread in the z component of the magnetic moments
of the silver atoms as they emerge from the oven, ranging from −|µz| to |µz|. A line should
then appear on the observation screen along the z direction. Instead, what was found
was that the silver atoms arrived on the screen at only two points that corresponded to
magnetic moments of

µz = ±µB; µB =
e!
2me

(6.13)

where µB is known as the Bohr magneton.
Space quantization was clearly confirmed by this experiment, but the full significance
of their results was not realized until some time later, after the proposal by Uhlenbech
and Goudsmit that the electron possessed intrinsic spin, and a magnetic moment. The
full explanation based on what is now known about the structure of the silver atom is as
follows. There are 47 electrons surrounding the silver atom nucleus, of which 46 form a
closed inner core of total angular momentum zero – there is no orbital angular momentum,
and the electrons with opposite spins pair off, so the total angular momentum is zero, and
hence there is no magnetic moment due to the core. The one remaining electron also has
zero orbital angular momentum, so the sole source of any magnetic moment is that due to
the intrinsic spin of the electron as given by Eq. (6.10).
Thus, the experiment represents a direct measurement of one component of the spin of
the electron, this component being determined by the direction of the magnetic field, here
taken to be in the z direction.
There are two possible values for S z, corresponding to the two spots on the observation
screen, as required by the fact that s = 1

2 for electrons, i.e. they are spin-
1
2 particles. The

allowed values for the z component of spin are
S z = ± 12! (6.14)

which, with the gyromagnetic value of two, yields the two values given in Eq. (6.13) for
µz.
The Stern-Gerlach device thus presents a possible way of measuring the various compo-
nents of angular momentum, including particle spin. It is in this sense that the Stern-
Gerlach experiment is employed in what follows. Thus, if a silver atom emerges in the
S z = 1

2! beam, then the statement can be made that the z component of the spin of the
valence electron has been measured to be S z = 1

2!.
Of course there is nothing special about the direction z, i.e. there is nothing to distinguish
the z direction from any other direction in space. What this means is that any component
of the spin of an electron will have only two values, i.e.

S x = ± 12!, S y = ± 12! (6.15)
and indeed, if n̂ is a unit vector specifying some arbitrary direction in space, then

S · n̂ = ± 12!. (6.16)



Chapter 6 Particle Spin and the Stern-Gerlach Experiment 52

Oven n̂

S · n̂ = 1
2!

S · n̂ = − 12!

Figure 6.1: Stern-Gerlach device set to separate
an atomic beam according to the n̂ component of
spin. Separation according to the x component
would be represented by the same diagram, except
with an X within the rectangle, and similarly for
other directions.

Thus, by orienting the magnetic field in
a Stern-Gerlach device in some direction
n̂ perpendicular to the direction of mo-
tion of the atoms in the beam, the atoms
will emerge in two possible beams, cor-
responding to S · n̂ = ± 12!. The positive
sign is usually referred to as spin up in
the n̂ direction, the negative sign as spin
down in the n̂ direction. In the examples
considered so far, the separation has al-
ways been in the z direction, i.e. n̂ = k̂,
but it is equally well possible to orient
the magnetic field to lie in the x direc-
tion, i.e. n̂ = î, so that the atomic beam
is split into two beams with S x = ± 12!.
In order to represent these possibilities in a diagram of the Stern-Gerlach device, a label
will be included on the diagram to indicate the direction in which the magnetic field is
oriented, and hence the component of the spin that is being measured. This is illustrated
in the diagram Fig. 6.1.

We will now use the above stripped-down picture of a Stern-Gerlach device to examine
some purely quantum features of particle spin. Although the fact that particle spin is a
purely quantum phenomenon, it is not the fact that particle spin exists and is of quan-
tum origin that is of interest here. It is the properties that spin possesses when subject to
various measurements that is of importance here – features that all quantum mechanical
systems exhibit such as probabilistic outcomes of measurements, interference of proba-
bility amplitudes and so on are found to arise, but in circumstances in which there are
only a handful of parameters needed to describe what is happening.

6.4 Quantum Randomness in Spin Measurements

One of the features of quantum mechanics is that it is not possible, even in principle,
to have complete knowledge of all the physical variables that characterize the state of
a system. Thus, for instance, exact knowledge of the position of a particle mens that
there is total uncertainty in the knowledge of its momentum, and vice versa. The same
is true for particle spin, except that here it us the various components of spin that cannot
be known simultaneously with complete accuracy. That this is the case has is built into
quantum mechanics in a fundamental way, but the manner in which it expresses itself
varies depending on the circumstances under which an attempt is made to measure more
than one component of spin. It is found, in the example to be discussed below, that the
uncertainty principle plays a fundamental role in that it appears to provide a mechanism,
or at least an explanation, as to why only one component can be known exactly at any one
time. But the real ‘why’ is that it is a fundamental law of nature.

Consider a series of spin measurements using a sequence of Stern-Gerlach devices, as
illustrated in following diagram:
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Z
X

Z

Oven

S z = 1
2!

S x =
1
2!

S z = 1
2!

S z = − 12!

In this experiment, atoms are separated in the first device according to their z component
of spin. Those for which S z = 1

2! are then passed through a second device in which
atoms are separated according to their x component of spin. Those for which S x =

1
2! are

passed through a third device which separates the atoms according to their z component,
once again. The naive expectation is that, since these atoms have already been preselected
to have S z = 1

2!, then they will all emerge from the final device in the S z =
1
2! beam. It

turns out that this is not what is observed. The atoms emerge randomly in either beam,
but with equal probability. The interpretation that immediately comes to mind is that
the intervening measurement of the x component of spin has in some way scrambled
the z component of spin, but according to classical physics, it should be possible either to
arrange the experiment such that any such scrambling be made negligibly small, or else be
able to correct for the apparent scrambling in some fashion. It turns out that the quantum
effects prevent this from happening – this scrambling, and the consequent introduction of
randomness into the outcome of the experiment cannot be avoided, except at the cast of
not being able to measure the x component of spin at all! Thus we see again an example
of intrinsic randomness in the behaviour of macroscopic systems.

In the following section, an argument is presented which shows how it is that quantum
effects prevent the simultaneous exact measurement of both the x and the z components
of spin i.e. that it is uncontrollable quantum effects that give rise to the scrambling of the
z component of spin during the measurement of the x component.

6.4.1 Incompatible Measurements of Spin Components

The obvious question to ask is whether or not the experiment can be refined in some
way to avoid this scrambling. From the perspective of classical physics, the answer is
definitely yes, at least in principle. The problem is that the atoms, as they pass through
the second Stern-Gerlach device, will experience precession about the x axis which will
have the effect of changing the z component of the spin. But by suitable fiddling with the
beam, the magnetic field strengths and so on it should be possible in principle, at least
from the point of view of classical physics, to minimize this effect, or at least determine
exactly how much precession occurs, and take account of it. But in practice, it turns out
that all these attempts fail. If the experiment is refined in such a manner that the precession
is made negligible, (e.g. by using faster atoms, or a weaker magnetic field), the result is
that the two emerging beams overlap so much that it is impossible to tell which beam an
atom belongs to, i.e. we retain exact information on the z component of spin, but learn
nothing about the x component! In general, it appears that it is not possible to measure
both S z and S x (or, indeed any pair of components of the particle spin), precisely. This
kind of behaviour is reminiscent of what is found to happen when we attempt to measure
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both the position and the momentum of a particle. According to the uncertainty principle,
the more precisely we determine the position of a particle, the less we know about the
momentum of the particle. The difference here is that the quantities being measured are
discrete – they have only two possible values, whereas the position and momentum of a
free particle (even in quantum mechanics) can assume a continuous range of values.

A Detailed Analysis By use of a hybrid mixture of classical and quantum mechanical
arguments, it is possible to come to some ‘understanding’ of why this occurs. Consider
the atoms that have left the first Stern-Gerlach device with S z = 1

2! and enter the next
device which has a magnetic field B = Bi oriented in the x direction. This magnetic field
is non-uniform, in other words B is a function of position – it could be written B(x, y, z).
The experimental arrangement is such that the non-uniformity is most marked in the x
direction – it is this non-uniformity that is responsible for the forces acting to deflect the
atoms as they move through the device. In fact, the interaction of the magnetic moment
µµµ of the atoms with this non-uniform magnetic field has two consequences. First, as just
mentioned, the atoms feel a force in the x direction given by

Fx = −µx
∂B
∂x

(6.17)

where µx is the x component of the magnetic moment of the atoms. If we accept in this
otherwise classical argument that the values of the spin of an electron are restricted to
their quantized values, then

µx = ±
e!
2m

(6.18)

corresponding to the two possible values of S x = ∓ 12!, and leading to the formation of
two separate beams corresponding to the two values of S x.

Second, the magnetic moment of the atoms will precess about the direction of the mag-
netic field with an angular frequency given by

ω =
µxB
! . (6.19)

As a consequence of this precession, the y and z components of µµµ and hence of S will
change with time, while the x component will remain unchanged.

This precession is one ingredient in the explanation of the ‘scrambling’ of the z component
of the spin. The second ingredient is based on the fact that the atomic beam that leaves the
oven, and passes through the various Stern-Gerlach devices will have a non-zero cross-
section, or, in other words, atoms in the beam will, in general, pass through the magnetic
field along trajectories with different values of x and hence each atom will experience
different magnetic field strengths, and consequently will have different precession rates.
The nett result of this is that after the atoms leave the magnetic field, the various atoms
will have had their magnetic moments rotated through a range of different angles, so that
there will be, in consequence, a spread in the possible values of S z. Translated into the
quantum picture, this means that S z can, with equal probability, be observed to be ± 12!,
and hence the result that is seen in the experiment.

If we are to believe that this argument has some truth in it then it seems that the ‘scram-
bling’ of the z component of the atomic magnetic moment can be minimized simply by
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making sure that all the atoms pass along the same trajectory through the magnetic fields.
If this were possible, and classical physics claims that it is, then the effect of precession on
the z component of spin could be accounted for, so that, in effect, the measurement of the
x component of spin will not interfere with the results of the preceding measurement of
the z component. However, quantum mechanics, in the form of the uncertainty principle,
prevents this from happening, as the following argument shows.

The fact that the atomic beam has a finite width means that there is uncertainty in the
cross-sectional position of the atoms in the beam. In the x direction, the uncertainty in
position is ∆x, which implies, by the uncertainty principle, that there is an uncertainty
∆px in the x component of the momentum of the atom given by

∆px ≈
!
∆x
. (6.20)

This translates into an uncertainty in the x velocity of the atom given by

vx ≈
!

m∆x
. (6.21)

As a consequence, during the time of flight t of the atoms through the device, the uncer-
tainty in the width of the beam will grow by an amount δx given by

δx = ∆vxt ≈
!

m∆x
t. (6.22)

So, the width of the beams is growing linearly in time. Meanwhile the two beams are
separating at a rate determined by the force Fx given in Eq. (6.17). Assuming that this
force is constant, then the separation between the beams will be, after a time t

2 × 1
2
Fx

m
t2 = m−1µx

∂B
∂x
t2 (6.23)

where the factor of 2 comes from the fact that the two beams are pulling away from each
other at the same rate. The crucial part of the argument is then this: the separation of the
two beams must be greater than the widths of the beams otherwise the two beams will
overlap, and it will be impossible to distinguish which beam a particle belongs to, in other
words it will be impossible to know what the x component of the spin of the atom is.
Thus, in order to be able to determine the x component of spin, we must have

δx << µx
∂B
∂x
t2 (6.24)

which becomes, after substituting for δx

!−1µx∆x
∂B
∂x
t >> 1. (6.25)

The quantity ∆x∂B/∂x is the variation in the strength of the magnetic field across the
width of the beam as experienced by the atoms as they pass through the device. This
means that the atoms will precess at rates that cover a range of values ∆ω given by, from
Eq. (6.19)

∆ω =
µx
! ∆x

∂B
∂x
. (6.26)
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Substituted into the inequality Eq. (6.25), this gives

∆ωt >> 1. (6.27)

In other words, the spread in the angle ∆ωt through which the magnetic moments precess
is so large that the z component of the spin, roughly speaking, is equally likely to have
any value, in other words, it is completely randomized.

This argument shows that it is not possible to measure both the z and the x components
of spin, or indeed any pair of components of spin. If we have determined a value for
S z say, and we want to then measure S x, then, in order to make the latter measurement
possible, we have to separate the beams enough that they are distinguishable. But this
unavoidably results in total randomization of the value of S z. If we arrange the experi-
mental conditions to be such that S z is not changed by the measurement of S x, we find
that the two beams exiting from the Stern-Gerlach device overlap to such an extent that it
is not possible to say which beam an atom belongs to, i.e. we have not, in fact, measured
S x. The preceding argument is not wholly satisfactory as it is a mixture of classical and
quantum concepts, and should be viewed purely as aid to understanding what is taking
place. The central, quantum mechanical fact, is that the intervening measurement of the
x component randomizes the previously exactly known value of S z. It might be argued
that the fault lies with the Stern-Gerlach device, and that by using some other method of
measuring the components of spin, we can get around the sort of problems encountered
here. Even if S x and S z were measured by means that have nothing whatsoever to do with
the Stern-Gerlach experiment, the same result would be obtained: an intervening mea-
surement of the x component will randomize the previously exactly known value of S z. A
different argument based on the uncertainty relation could undoubtedly be formulated in
each case to ‘explain’ the result, as discussed in Chapter 4, but the fact that the same kind
of behaviour is always observed irrespective of the circumstances is telling us that there
is a basic physical principle in action here, in effect a law of nature – one of the laws of
quantum mechanics – that guarantees that under no circumstances is it possible to have
exact knowledge of more than one component of the spin of a particle.

6.4.2 Probabilities for Spin

A crucial feature of the above result was that the intervening measurement of the x com-
ponent of spin had the effect of randomizing the outcome of the remeasurement of the z
component. By symmetry it is expected that if the z component of spin has been measured
as S z = 1

2! say, then in the following measurement of S x, there is an equal chance of the
atoms emerging in either of the S x = ± 12! beams. However, for later purposes, it is useful
to have on hand an expression for the probabilities in the case in which the magnetic fields
in the Stern-Gerlach devices are set in some arbitrary direction in the XZ plane (the atoms
are travelling in the direction of the positive Y axis). It is possible to use arguments based
on symmetry and geometry to arrive at the required results, but here, the result will be
simply presented as something that can be measured.

To begin with, we will look at the following Stern-Gerlach experiment, illustrated in
Fig. (6.2).
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n̂
Z

Oven

S · n̂ = 1
2!

S · n̂ = − 12!

S z = 1
2!

S z = − 12!

Figure 6.2: Atoms with random spin orientation filtered through a Stern-Gerlach device with
magnetic field in n̂ direction, and the S i = S · n̂ = 1

2! beam passed through a second device with
magnetic field in z direction.

In this experiment, the atoms, after they leave
the oven, pass through a Stern-Gerlach device
in which the magnetic field is oriented in the
direction specified by the unit vector n̂, where
n̂ lies in the XZ plane, at an angle of θi to
the Z axis, see Fig. (6.3). Atoms will leave
this device in one of two beams, correspond-
ing to the component of spin S in the direction
of n̂ having one or the other of the two values
S i = S · n̂ = ± 12!. For the purposes of the ex-
periment, atoms exiting from the lower beam,
for which S i = − 12! are blocked, while those
exiting in the upper beam, for which S = 1

2!

X

Y

Z
n̂
θi

Figure 6.3: The unit vector n̂ specifies the
direction of the magnetic field in a Stern-
Gerlach device. This vector lies in the XZ
plane, and the atomic beam travels in the
direction of the positive Y axis.

pass through a second Stern-Gerlach device, this time with its magnetic field oriented to
separate the atoms according to their z component of spin. In general, the atoms will exit
from this second device, once again, in one or the other of two beams, the upper one in
the diagram being the beam for which S z = 1

2!, the lower one being the one for which
S z = − 12!.
Let us suppose that the experiment is repeated many times over for each setting of the
angle θi in order to obtain, experimentally, the fraction, or in other words, the probability,
of atoms emerging from the final Stern-Gerlach device in either of the two beams. The
experimental result obtained is that

Probability of atoms emerging in the S z = 1
2! beam = cos

2(θi/2)
Probability of atoms emerging in the S z = − 12! beam = sin

2(θi/2)
(6.28)

At this point it is useful to introduce a new notation for this probability. First we note that
the atoms, as they exit from the first Stern-Gerlach device, are such that S i = 1

2!. Next we
note that this is the maximum amount of information that we can have about the spin of
these atoms – any attempt to measure another component will scramble this component
is an uncontrollable way. So, to the best that we can manage, we can characterize the
physical state of the atoms by S i = 1

2!. When they exit from the second Stern-Gerlach
device, they are either in a state for which S z = 1

2!, or for which S z = − 12!. We will now
adopt the notation

P(A|B) = Probability of observing a system in a state for which information A is
known given that it was in a state for which information B is known.



Chapter 6 Particle Spin and the Stern-Gerlach Experiment 58

We can now write

P(S z = 1
2!|S = 1

2!) = cos
2(θi/2)

P(S z = − 12!|S = 1
2!) = sin

2(θi/2)
(6.29)

We can check to see if this makes physical sense by looking at some special cases. Thus, if
n̂ = k̂, i.e. the first Stern-Gerlach device has the magnetic field oriented in the z direction,
then S i = S z and θi = 0 so that the device is equivalent to the set-up given in Fig. (6.4)

Z
Z

Oven

Figure 6.4: Same as Fig. (6.2) but with n̂ in z direction.

and the probabilities become, from Eq. (6.28) with θi = 0

P(S z = 1
2!|S z = 1

2!) = 1
P(S z = − 12!|S z = 1

2!) = 0
(6.30)

which is as it should be – if an atom has been measured to have S z = 1
2!, then a subsequent

measurement of S z should simply confirm this result.

Next, if we look at the case of n̂ = î, so that the magnetic field is oriented in the x direction
in the first Stern-Gerlach device, then we have S i = S x and θi = π/2. The set-up is then
as illustrated in Fig. (6.5)

X
Z

Oven

Figure 6.5: Same as Fig. (6.2) but with n̂ in x direction.

and the probabilities are, from Eq. (6.28) with θi = π/2

P(S z = 1
2!|S x =

1
2!) =

1
2

P(S z = − 12!|S x =
1
2!) =

1
2

(6.31)

which is also consistent with what we have seen before – if the atom has been measured
to have S x =

1
2!, then there is an equal chance that it will be measured to have S z = ± 12!.

Finally, we will consider the case in which n̂ = −k̂, i.e. θi = π. In this case, S i = −S · k̂ =
−S z and the set-up is as in Fig. (6.6).
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−Z ≡ −k̂
Z

Oven

S z = − 12!

S z = 1
2!

S z = − 12!

Figure 6.6: Atoms with random spin orientation filtered through a Stern-Gerlach device with
magnetic field in n̂ = −k̂ direction. The atoms in the upper beam exiting from this Stern-Gerlach
device are those for which S i = S · n̂ = −S z = 1

2!.

As the field is in the negative z direction, the upper beam leaving the first Stern-Gerlach
device in Fig. (6.6) will have S i = −S z = 1

2!, i.e. S z = − 12!. Consequently, when this
beam enters the next Stern-Gerlach device with the field oriented in the z direction, all the
atoms will emerge in the S z = − 12! beam. This is in agreement with the probabilities that
follow from Eq. (6.28) with θi = π, i.e.

P(S z = 1
2!|S z = − 12!) = cos2(12π) = 0

P(S z = − 12!|S x =
1
2!) = sin

2(12π) = 1
(6.32)

6.5 Quantum Interference for Spin

In the last Chapter, what is identified as the essential ‘mystery’ of quantum mechanics
was illustrated in the two slit experiment using particles. In this experiment, there are two
ways that a particle can pass from the particle source to the observation screen i.e. via one
slit or the other, but provided the slit through which the particle passes is not observed,
the particles do not strike the screen in a way that is consistent with our intuitive notion
of the way a particle should behave: the particles strike the observation screen at random,
but with a preference to accumulate in certain regions, and not at all in other regions, so
as to form a pattern identical to the interference pattern that would be associated with
waves passing through the slits. In contrast, if the slit through which each particle passes
is observed in some fashion, the interference pattern is replaced by the expected result for
particles. It is the lack of any explanation for this kind of behaviour in terms of everyday
intuition and/or classical physics that is seen as the fundamental mystery of quantum
mechanics.

It was inferred from this experiment that associated with the particle was some kind of
wave, a probability amplitude wave or wave function which, for a point x on the observa-
tion screen, could be written as the sum of two contributions originating from each slit –
Ψ(x, t) = Ψ1(x, t)+Ψ2(x, t) – and whose intensity |Ψ(x, t)|2 gave the probability density of
observing a particle at a particular position x on the observation screen. All these results
referred to the measurement of the position of the particle, a continuously variable quan-
tity. The aim here is to show that interference is a signature of quantum mechanics even
when, as in the case of particle spin, the property of the particle being observed is not its
position, but rather its spin, which can only have discrete values. Moreover, it is intended
to show that interference arises when there is more than one ‘path’ that a particle can
follow between its source and its final observation. This demonstration provides further
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evidence that there is an underlying commonality between different examples of quantum
behaviour, evidence of some fundamental law or laws that apply to all physical systems,
though superficially realized in different ways for different systems. In this experiment,
atoms emerges from the oven, and are then passed through a Stern-Gerlach device whose
magnetic field is oriented so as to separate the atoms into two beams according to their x
component of spin. The atoms emerge in two separate beams corresponding to the atomic
spin component S x = S · î = ± 12!. The atoms in one of the beams (S x =

1
2!) is then

selected and passed through a Stern-Gerlach device where the magnetic field further sep-
arates this beam according to its z component of spin. The atoms emerge in one or the
other of two beams corresponding to S z = S · k̂ = ± 12!. The two beams are then recom-
bined into a single beam. This is done using a third Stern-Gerlach device in which the
magnetic field is equal and opposite to the preceding device. This does not scramble the
spins of the atoms – the sole purpose is to recombine the beams and could equally well
have been done by some other technique. Finally, this beam is passed through a further
Stern-Gerlach device with its magnetic field oriented in the x direction so that atoms will
emerge from this device with either S x = ± 12!.

Oven X
Z −Z X

Figure 6.7: Atomic beam for which S x = 1
2! split into S z = ±12! beams and then recombined

before passing through a final Stern-Gerlach device with magnetic field in x direction.

It is important to see the analogy between this setup and the two slit interference exper-
iment. The oven plus the first Stern-Gerlach device is the equivalent of the source of
identically prepared particles in the two slit experiment. Here the atoms are all identi-
cally prepared to have S x =

1
2!. The next two Stern-Gerlach devices are analogous to the

two slits in that the atoms can, in principle, follow two different paths corresponding to
S z = ± 12! before they are recombined to emerge in one beam. The analogue is, of course,
with a particle passing through one or the other of two slits before the position where it
strikes the observation screen is observed. We can tell which path an atom follows (i.e. via
the S z = 1

2! or the S z = − 12! beam) by monitoring which beam an atom emerges from
after it passes through the first z oriented Stern-Gerlach device in much the same way that
we can monitor which slit a particle passes through in the two slit experiment. Watching
to see in which beam an atom finally emerges after passing through the last Stern-Gerlach
device is then analogous to seeing where on the observation screen a particle lands after
passing through the two slit device.

The results found are as follows. If the intervening state of the atoms is not observed, the
results obtained are the same as if the beam splitter-recombiner were not there, i.e. the
results are the same as in Fig. (6.4), and Eq. (6.30), though here for the x component.
However, if the z component of the spin is observed, then it is effectively an atom with a
known z component of spin that enters the last Stern-Gerlach device, as for Fig. (6.5), and
hence the probability of the atom having either value of S x becomes 12 , as in Eq. (6.31).

This behaviour is reminiscent of what was observed in the two slit experiment – if we do
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not observe through which slit the particles pass, then we observe an interference pattern.
If we do observe through which slit the particles pass, then there is no interference pattern.
So, is there a sense in which the results found above for the Stern-Gerlach experiment can
be interpreted as the presence of interference in the first case, and no interference in the
second? We can present a persuasive, but non-rigorous argument that this is the case. A
much sharper argument is presented later in Section 7.3.

Suppose, for the present that probability amplitudes can indeed be associated with the
atoms passing through either of the two S z = ± 12! beams before their x component of
spin is observed. So let Ψ±(S x) be the amplitudes for the spin to be measured to be S x,
given that they passed through either the S z = 1

2! or the S z = − 12! beam. This is analogous
to the probability amplitudes Ψn(x) of observing the particle at position x given that they
passed through slit n. From the results presented above if we do not observe through
which intervening beam the atoms passed, we should add the probability amplitudes and
then take the square:

Probability of atom emerging
in S x =

1
2! beam

= |Ψ+( 12!) + Ψ−( 12!)|2 = 1

Probability of atom emerging
in S x = − 12! beam

= |Ψ+(− 12!) + Ψ−(− 12!)|2 = 0
(6.33)

While, if we do observe through which beam they pass, we should add the probabilities:

Probability of atom emerging
in S x =

1
2! beam

= |Ψ+( 12!)|2 + |Ψ−( 12!)|2 = 1
2

Probability of atom emerging
in S x = − 12! beam

= |Ψ+(− 12!)|2 + |Ψ−(− 12!)|2 = 1
2 .

(6.34)

By symmetry we should also have that

|Ψ±( 12!)|2 = |Ψ±(− 12!)|2 (6.35)

i.e. whether the atom comes through via the S z = 1
2! or the S z = − 12! beams, they

should still have an equal chance of emerging in either of the S x = ± 12! beams. A quick
calculation shows that these equations are satisfied by

Ψ±( 12!) =
1
2 Ψ±(− 12!) = ± 12 . (6.36)

In other words, the possibility exists of interpreting the observed results as being the
consequence of interference taking place. Thus, we have

Probability of atom emerging
in S x = ± 12! beam

= | 12 ± 1
2 |2 = 1

4 +
1
4 ± 1

2 (6.37)

where the term ± 12 is the ‘interference’ term. We have constructive interference when this
term is positive, giving unit probability of finding the atom exiting in the S x =

1
2! beam,

and destructive interference when this term is negative, giving zero probability of the atom
emerging in the S x = − 12! beam. If the intervening beam through which the atoms pass
is observed, the results are just a half for either the S x =

1
2! or the S x = − 12! beam, which

is just the result that is obtained if the interference term in Eq. (6.37) is removed. Thus,
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there indeed appear to be two contributions to the total probability amplitude of observing
the atom to have the x component of spin equal to ± 12!, these being associated with the
probability amplitudes of the atoms passing along one or the other of the two S z beams.

There is a complete analogue here with the two slit experiment. In that experiment, the
aim was to provide two paths along which the particles could pass: from the source
through either slit 1 or 2, and then to the final measurement of the x position on the
screen. Here, we want to provide two possible ‘paths’ for the spin of the atoms: from
initial spin S = 1

2!, through either of S z =
1
2! or S z = − 12!, until finally a measurement is

made of S x. The spin of the atoms therefore follows paths in what might be called ‘spin
space’, rather than in real space. Experimentally these paths in spin space are produced
by providing different paths in real space for the atoms to follow, depending on their spin,
but this is a feature of the experiment only, and largely irrelevant to the argument being
developed here.

The first Stern-Gerlach device plays the same role here as the source of particles in the
two-slit experiment, and provides a source of atoms for which S x =

1
2!. The Stern-

Gerlach device that separates the beams in the z direction is then the equivalent of the two
slits as it provides two different ‘paths’ that the atomic spin can follow prior to the final
measurement. By then recombining the two beams, we lose all information concerning
the path that the atoms follow. Thus, when the final measurement of the x component of
spin is performed, we have no way of knowing whether an atom exited from the second
Stern-Gerlach device with S z = 1

2! or S z = − 12!, unless we explicitly observe which beam
an atom belongs to immediately as it exits the device. This is analogous to not knowing
which slit a particle passes through before its x position is measured on the observation
screen in the usual two slit experiment.

We therefore find, once again, that if we have information on which ‘path’ the system of
interest follows as it makes its way from some initial state to some final measurement, we
get a different result from what we get if we do not have this information. In the case of
the two slit experiment, lack of ‘which path’ information leads to wave-like interference
effects which are absent if we do know which slit the particle passes through. In the
case of particle spin the result obtained when the intermediate spin S z is not observed
can also be interpreted as being due to interference effects which are absent if the spin
of the atoms is observed. For the present it is sufficient to note that the outcome of the
experiment does depend on whether or not the intermediate observation of S z is made. It
therefore appears that there is much in common between the two slit experiment and the
spin experiment, in spite of the manifestly different physical character of the experiments.
Put in another way, there appears to be some fundamental laws in action here, the laws
of quantum mechanics, that are expressed in slightly different ways in different physical
systems: interference and randomness observed in the measurement of particle position
in the two slit experiment, and similar behaviour in the measurement of particle spin. The
laws of quantum mechanics, and the mathematical language in terms of which these laws
are stated, is the subject of the following Chapter.


