
PHYSICS 301 QUANTUM PHYSICS I (2007)

Assignment 3 Solutions

1. (a) With respect to a pair of orthonormal vectors |1〉 and |2〉 that span the state
space H of a certain system, the Hermitean operator Q̂ is defined by its action
on these base states as follows:

Q̂|1〉 = 2|1〉 − 2i|2〉 Q̂|2〉 = 2i|1〉 − |2〉.

(i) What is the matrix represention of Q̂ in the {|1〉, |2〉} basis?
(ii) Show that the states

|q1〉 =
1√
5

(
|1〉+ 2i|2〉

)
|q2〉 =

1√
5

(
2|1〉 − i|2〉

)
.

are eigenstates of Q̂ and that the associated eigenvalues are q1 = −2 and
q2 = 3 respectively.

(b) The operator Q̂ above represents a certain physical observable Q of a quantum
system which is prepared in the state

|ψ〉 =
1√
3
|q1〉+

1 + i√
3
|q2〉.

(i) What are the possible results of a measurement of the observable Q?
(ii) What are the probabilities of obtaining each of the possible results?
(iii) What is the state of the system after the measurement is performed for

each of the possible measurement outcomes?

SOLUTION

(a) (i) The matrix representation is given by

Q̂
.=

(
Q11 Q12

Q21 Q22

)
where Qij = 〈i|Q̂|j〉.
By direct calculation from the above defining properties of Q̂, it follows
that

Q̂
.=

(
2 2i
−2i −1

)
(ii) The calculation can proceed by either using the matrix representation of

the operator, or by carrying out the calculation in bra-ket notation. The
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first will be done in the bra-ket notation. Thus, what is required is

Q̂|q1〉 =Q̂
1√
5

(
|1〉+ 2i|2〉

)
=

1√
5

(
Q̂|1〉+ 2iQ̂|2〉

)
=

1√
5

[
2|1〉 − 2i|2〉+ 2i(2i|1〉 − |2〉)

]
=

1√
5

[
−2|1〉 − 4i|2〉

]
=− 2

1√
5

[
|1〉+ 2i|2〉

]
=− 2|q1〉.

Thus, |q1〉 is an eigenstate of Q̂ with eigenvalue −2.
The second case will be dealt with using the column vector representation
of |q2〉, i.e.

|q2〉
.=

(
〈1|q2〉
〈2|q2〉

)
=

1√
5

(
2
−i

)
.

Thus

Q̂|q2〉 =
(

2 2i
−2i −1

)
1√
5

(
2
−i

)
=

1√
5

(
6
−3i

)
= 3

1√
5

(
2
−i

)
.= 3|q2〉

i.e. |q2〉 is an eigenstate of Q̂ with eigenvalue 3.
(b) (i) The possible results of a measurement of the observable Q are the eigen-

values of Q̂, i.e. −2 and 3.
(ii) The probability amplitude of obtaining the result q1 = −2 is

〈q1|ψ〉 =
1√
3
〈q1|q1〉+ 0 =

1√
3
〈q1|q1〉

where the orthogonality of the eigenvectors with different eigenvalues has
been used to eliminate the second term. Further

〈q1|q1〉 =
1
5

(
1 −2i

) (
1
2i

)
= 1

so that |q1〉 is normalized to unity. Thus

〈q1|ψ〉 =
1√
3

and hence the probability of obtaining the result q1 = 2 is

|〈q1|ψ〉|2 =
1
3
.

The probability amplitude of obtaining the result q2 = 3 is

〈q2|ψ〉 =
1 + i√

3
〈q2|q2〉

where once again the orthogonality of the eigenstates has been used. Check-
ing that |q2〉 is normalized to unity:

〈q2|q2〉 =
1
5

(
2 i

) (
2
−i

)
= 1
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then yields for the probability of obtaining the result q2 = 3:

|〈q2|ψ〉|2 =
∣∣∣∣1 + i√

3

∣∣∣∣2 =
2
3
.

(iii) If the result obtained is q1 = −2, then the system ends up in the state |q1〉,
and if the result q2 = 3 is obtained, then the system ends up in the state
|q2〉.

2. In so-called isospin theory, the neutron and the proton are assumed to be two differ-
ent states, |n〉 and |p〉 respectively, of the one particle called the nucleon. Suppose as
a result of a collision betwen a nucleon and another particle, the state of the nucleon
undergoes a change represented by the operator Ê defined by

Ê|n〉 =
(
|n〉+ |p〉

/√
2

Ê|p〉 =
(
|n〉 − |p〉

)
/
√

2

‘mixes’ the two states |n〉 and |p〉.

(a) Suppose the nucleon is prepared in the state |n〉, and the nucleon suffers such
a collision. What is the probability that the nucleon could still be observed to
be a neutron after the collision?

(b) Construct a matrix to represent Ê in the {|n〉, |p〉} basis.

(c) Write the state |ψ〉 =
(
|n〉 − 2i|p〉

)
/
√

5 as a column vector, and determine the
new state of the system after the collision has occurred.

(d) Write the bra vector 〈ψ| as a row vector, and hence show that the probability
the nucleon could be observed in the state |ψ〉 after the collision is non-zero.
Evaluate this probability.

(e) Do there exist states of the nucleon for which the collision does not change the
state? If so, determine what the state or states are that have this property.

SOLUTION

(a) If prepared in the state |n〉, then the state after the collision is

Ê|n〉 =
(
|n〉+ |p〉

)
/
√

2.

It is readily seen that this state is normalized to unity. Hence the probability
amplitude that the nucleon will still be observed to be a neutron after the
collision will be

〈n|Ê|n〉 = 〈n|
(
|n〉+ |p〉

)
/
√

2 =
1√
2

and hence the probability will be

|〈n|Ê|n〉|2 = 1
2 .

(b) This matrix will be

Ê
.=

Enn Enp

Epn Epp

 =


1√
2

1√
2

1√
2

− 1√
2


3



where, for instance

Enn =〈n|Ê|n〉

=〈n|
(
|n〉+ |p〉

)
/
√

2 =
1√
2

and so on.

(c) As a column vector, the state vector |ψ〉 is

|ψ〉 .=

〈n|ψ〉

〈p|ψ〉

 =


1√
5

− 2i√
5

 .

After the collision has occurred, the new state is

Ê|ψ〉 .=


1√
2

1√
2

1√
2

− 1√
2




1√
5

− 2i√
5

 =
1√
10

1− 2i

1 + 2i


This state can also readily shown to be normalized to unity.

(d) The bra vector, as a row vector, is written

〈ψ| =
(

1√
5

2i√
5

)
and the probability amplitude of the nucleon being found in the state |ψ〉 after
the collision will be 〈ψ|Ê|ψ〉, and given by

〈ψ|Ê|ψ〉 =
(

1√
5

2i√
5

)
1√
10

1− 2i

1 + 2i

 =
1√
50

(
1− 2i+ 2i− 4

)
= − 3√

50

and hence the probability of the nucleon being found in the state |ψ〉 after the
collision will be

|〈ψ|Ê|ψ〉|2 =
9
50

= 0.18

(e) For a state of the system to be unchanged by the action of Ê this would require
the state to be mapped into a multiple of itself – recall that a given state vector,
or any multiple of that state vector will represent the same physical state of
the system. But this requirement is identical to requiring the state to be an
eigenstate of Ê. Thus we have to determine what state or states, call them |λ〉,
are such that

Ê|λ〉 = λ|λ〉.

The eigenvalues of Ê are found in the usual way, i.e. by solving

Ê|λ〉 = λ|λ〉.

The characteristic equation∣∣∣∣∣∣∣
1√
2
− λ

1√
2

1√
2

− 1√
2
− λ

∣∣∣∣∣∣∣ = 0
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has the solutions λ = ±1 which we will write as λ1 = 1 and λ2 = −1. The
eigenstate with eigenvalue λ1 = 1 then satisfies 1√

2
− 1 1√

2

1√
2

− 1√
2
− 1

 〈n|λ1〉

〈p|λ1〉

 = 0

which yields the two equations(
1√
2
− 1

)
〈n|λ1〉+

1√
2
〈p|λ1〉 =0

1√
2
〈n|λ1〉 −

(
1√
2

+ 1
)
〈p|λ1〉 =0.

These equations are not linearly independent – at best we can solve only for
the ratio of 〈n|λ1〉 and 〈p|λ1〉 or alternatively put 〈p|λ1〉 = 1 to give

〈n|λ1〉 = 1 +
√

2

and hence the unnormalized eigenstate |λ1〉 is given by

|λ1〉
.=

1 +
√

2

1


which when normalized to unity becomes

|λ1〉
.=

1√
2(2 +

√
2)

1 +
√

2

1

 .

After a little bit of trigonometry, it is possible to show that this can be written
as

|λ1〉
.=

cos(π/8)

sin(π/8)


The other eigenstate is obtained in a similar fashion. The eigenstate with
eigenvalue λ2 = −1 satisfies 1√

2
+ 1 1√

2

1√
2

− 1√
2

+ 1

 〈n|λ2〉

〈p|λ2〉

 = 0

which yields the two equations(
1√
2

+ 1
)
〈n|λ2〉+

1√
2
〈p|λ2〉 =0

1√
2
〈n|λ2〉 −

(
1√
2
− 1

)
〈p|λ2〉 =0.

Putting 〈p|λ2〉 = 1 gives
〈n|λ2〉 = 1−

√
2

and hence the unnormalized eigenstate |λ2〉 is given by

|λ2〉
.=

1−
√

2

1


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which when normalized to unity becomes

|λ2〉
.=

1√
2(2−

√
2)

1−
√

2

1

 .

This, too, can be written in trignometric form as

|λ2〉
.=

− sin(π/8)

cos(π/8)


The above states λn, n = 1, 2 are then the required states for the nucleon that
would remain unchanged through the action of Ê.

3. (a) The negative oxygen molecular ion O−
2 consists of a pair of oxygen atoms sep-

arated by a distance 2a. As an approximation, the electron can be assumed to
be found only on one or the other of the oxygen atoms, at x = ±a.
(i) Within this approximation, what are the eigenvalues of the position oper-

ator x̂ for the electron?
(ii) The Hamiltonian Ĥ for the O−

2 ion is such that:

Ĥ|+ a〉 = 1
2E

(
|+ a〉+ eiπ/4| − a〉

)
Ĥ| − a〉 = 1

2E
(
α|+ a〉+ | − a〉

)
where E is a real number and α is a complex number. What must the
value of α be and why must it have this value?

(b) For the correct value of α, this operator can be shown to have the eigenstates

|E1〉 =
1√
2

(
|+ a〉+ eiπ/4| − a〉

)
and |E2〉 =

1√
2

(
|+ a〉 − eiπ/4| − a〉

)
.

Show, by directly calculating Ĥ|Ei〉, that the associated eigenvalues are E1 = E
and E2 = 0.

(c) The quantum system is prepared in the state |ψ〉 = 1√
3

[
|+ a〉+ i

√
2| − a〉

]
. A

measurement is made of the energy and the result E is obtained.

(i) What is the state of the system after this measurement was performed?
(ii) If, after the above result for the energy was obtained, the position of the

electron was measured, what is the probability of obtaining the result +a?
(iii) What would be the probability of getting the result −a if the position of

the electron was measured when the system was in the original state |ψ〉?
(iv) Could the system ever be found in a state in which the position of the

electron was x = +a and the energy was E? Explain your answer.

SOLUTION

(a) (i) The eigenvalues of the position operator x̂ will be ±a.
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(ii) The Hamiltonian is an observable of the system, and as such must be a
Hermitean operator. Consequently, it must be the case that 〈+a|Ĥ|−a〉 =
〈−a|Ĥ|+a〉∗. From the expressions for the action of Ĥ on the states |±a〉
we have that

〈+a|Ĥ| − a〉 = 1
2E〈+a|

(
α|+ a〉+ | − a〉

)
= 1

2Eα

while

〈−a|Ĥ|+ a〉 = 1
2E〈−a|

(
|+ a〉+ eiπ/4| − a〉

)
= 1

2Ee
iπ/4.

Consequently, the requirement that 〈+a|Ĥ| − a〉 = 〈−a|Ĥ| + a〉∗ tells us
that

1
2Eα =

(
1
2Ee

iπ/4
)∗

i.e.
α = e−iπ/4.

(b) We require, firstly

Ĥ|E1〉 =
1√
2
Ĥ

(
|+ a〉+ eiπ/4| − a〉

)
=

1√
2

(
Ĥ|+ a〉+ eiπ/4Ĥ| − a〉

)
=

E

2
√

2

(
|+ a〉+ eiπ/4| − a〉+ eiπ/4

(
e−iπ/4|+ a〉+ | − a〉

))
=
E√
2

(
|+ a〉+ eiπ/4| − a〉

)
=E|E1〉,

i.e. E1 = E. Secondly

Ĥ|E2〉 =
1√
2
Ĥ

(
|+ a〉 − eiπ/4| − a〉

)
=

1√
2

(
Ĥ|+ a〉 − eiπ/4Ĥ| − a〉

)
=

E

2
√

2

(
|+ a〉+ eiπ/4| − a〉 − eiπ/4

(
e−iπ/4|+ a〉+ | − a〉

))
=0|E2〉

i.e. E2 = 0.

(c) (i) As the result E was obtained, the state of the system immediately after the
measurement was performed is |E1〉, i.e. the eigenstate of Ĥ with eigenvalue
E.

(ii) As the system is now in the state |E1〉, the probability of obtaining the
result +a if a measurement of position was made is given by |〈+a|E1〉|2.
From the expression above for |E1〉, this is readily seen to be

|〈+a|E1〉|2 = 1
2 .

(iii) The probability of getting the result −a if a measurement of the position
of the electron was made when the system was in the state |ψ〉 is |〈−a|ψ〉|2.
From the above expression for |ψ〉 this is readily seen to be

|〈−a|ψ〉|2 = 1
3 .
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(iv) Suppose, after a measurement of energy, yielding the result E a measure-
ment of the position of the electron was performed, and suppose that the
result +a was obtained, as in part (ii) above. The system is now in the state
|+a〉. Now perform another measurement of energy. There are two possible
results: E and 0. The first will occur with a probability |〈E1| + a〉|2 = 1

2 ,
the second with a probability |〈E2| + a〉|2 = 1

2 . In other words, there is a
chance that the result observed for the energy of the system is no longer E
as obtained on the first measurement – the result 0 is equally likely. Thus,
the intervening measurement of the postiion of the electron has ‘scrambled’
the preceding result for the energy of the system – it is not possible for the
position of the electron and the energy of the system to be known precisely
at the same time.

4. The ammonia molecule consists of a plane of hydrogen atoms arranged in an equilat-
eral triangle, with the nitrogen atom positioned symmetrically either above or below
this plane, thereby forming a triangular pyramid shape. If we let |1〉 and |2〉 be
the position eigenstates for the nitrogen atom, corresponding to the atom being ei-
ther above or below the plane of hydrogen atoms respectively, then the Hamiltonian
matrix for the molecule can be shown to be, in the {|1〉, |2〉} basis

Ĥ
.=

(
E0 −A
−A E0

)
.

(a) Assuming that the state of the system at time t can be expressed as

|ψ(t)〉 = C1(t)|1〉+ C2(t)|2〉,

write down the Schrödinger equation for this system in matrix form.

(b) Confirm, by direct substitution into the equations for C1(t) and C2(t) that the
solutions for these coefficients are

C1(t) = 1
2e
−iE0t/h̄

(
aeiAt/h̄ + be−iAt/h̄

)
C2(t) = 1

2e
−iE0t/h̄

(
aeiAt/h̄ − be−iAt/h̄

)
where a and b are unknown constants.

(c) The system is initially in the state |1〉. Solve for the probability of observing
the system in state |2〉 at a later time t, and provide a physical interpretation
for your result.

SOLUTION

(a) In matrix form, the Schrödinger equation

Ĥ|ψ〉 = ih̄
d|ψ〉
dt

becomes (
E0 −A
−A E0

) (
C1

C2

)
= ih̄

(
Ċ1

Ċ2

)
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(b) Taking the derivative of the expressions given for C1(t) and C2(t) gives

ih̄

(
Ċ1

Ċ2

)
=1

2

(
a(E0 −A)e−i(E0−A)t/h̄ + b(E0 +A)e−i(E0+A)t/h̄

a(E0 −A)e−i(E0−A)t/h̄ − b(E0 +A)e−i(E0+A)t/h̄

)

=1
2

E0

(
ae−i(E0−A)t/h̄ + be−i(E0+A)t/h̄

)
−A

(
ae−i(E0−A)t/h̄ − be

−i(E0+A)t/h̄

)
E0

(
ae−i(E0−A)t/h̄ − be−i(E0+A)t/h̄

)
−A

(
ae−i(E0−A)t/h̄ + be−i(E0+A)t/h̄

)


=1
2

(
E0 −A
−A E0

) (
ae−i(E0−A)t/h̄ + be−i(E0+A)t/h̄

ae−i(E0−A)t/h̄ − be−i(E0+A)t/h̄

)
=

(
E0 −A
−A E0

) (
C1

C2

)
hence the given functions are indeed solutions of the Schrödinger equation.

(c) If the system was initially in the state |1〉, then the intial values of C1 and C2

will be
C1 = 1, C2(0) = 0

which tells us that
a+ b = 2, a− b = 0

and hence
a = b = 1.

The probability of finding the system in the state |2〉 is then

|〈2|ψ(t)〉|2 = |C2(t)|2.

Using the inital values of a and b we have

C2(t) = 1
2e
−iE0t/h̄

(
eiAt/h̄ − e−iAt/h̄

)
= e−iE0t/h̄ sin(At/h̄)

so that
|〈2|ψ(t)〉|2 = sin2(At/h̄).

This probability starts off at zero, as it should as the system is in the other
state |1〉 at this time. It thereafter oscillates with a frequency 2A/h̄, i.e. with
a period T = πh̄/A. After half a period, the probability of being in the state
|1〉 decreases to zero – the system is, with certainty, in the state |2〉, and a half
period later, the probability of being in the state |1〉 returns to unity, and so
on and on . . . . ..
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