PHYSICS 301 QUANTUM PHYSICS | (2006)

Assignment 3 Solutions

1. In so-called isospin theory, the neutron and the proton are assumed to b&énendistates,
Iny and|p) respectively, of the one particle called the nucleon. Suppose as a result of a
collision betwen a nucleon and another particle, the state of the nucleon undergoes a change
represented by the operateefined by

Elny = (In) +ilp)/ V2
Elp) = (il + 1p))/ V2
which ‘mixes’ the two statef) and|p).
(a) Suppose a neutronfgers such a collision. What is the probability that the nucleon
could still be observed to be a neutron after the collision?

(b) Construct the matrix representationl%fn the{|n), |p)} basis.

(c) (i) Write the statéy) = (In) — 2i|p))/ V5 as a column vector, and determine the new
state of the system after the collision has occurred.

(i) Write the bra vectoky| as a row vector, and hence show that the probability the
nucleon could be observed in the stgteafter the collision is non-zero. Evaluate
this probability.

(d) Show thaEE" = 1 wherel is the unit operator.

(e) If the nucleon is in an arbitrary staie) = alny + b|p) before a collision, what is its
state after the collision? |§) is normalized to unity, show that the state of the system
after the collision is still normalized to unity.

(f) Do there exist states of the nucleon for which the collision does not change the state?
If so, determine what the state or states are that have this property.

SOLUTION

(a) If the particle is initially a neutron, i.e. initially in the stdte, then after the collision,
it will be in the state A
Eln) = (In) + ilp))/ V2.

The probability that it will be observed to be a neutron after the collision will then be
~ 1
2 _ H _1
KnIEEIMIZ = Scnifind +ilp)) = 3.

(b) Using the ordering defined by

éi(m@m w@m)
(PIEIN)  (PIEIp)

we get
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(c) (i) As a column vector, the stalig) = (In) - 2i|p))/ V5 is, (with the states ordered as

in part (b))
() _ 1 (1
9 (o0r) = 3

The state of the particle after the collision has occurred will then be

Ely) = i(l i) i( 1_): i(?’)
V2\I 1) \B\-2 V10 \-
which can also be written as
1
V10

(i) The probatgility of the particle being observed in the stgteafter the collision
will be [(|Ely)2. Thus we need to calculate

Ely) = —=(3In) - i|p)).

A 1 N 1 (3 5 1

(WEW)=—(1 2 —( .):—:—.

Y \/5( )«/10—' V50 V2
Consequently the required probability is

[(WIElW)? = 0.5.

(d) Since, from part (b), we have

we immediately have

and hence
ger. (1 ) (1 -)_(1 O
2\ 1) e\ 1) o 1)

(e) The state before the collisionji® = alny + b|p) which can be represented as a column

matrix
_[(a
(3

The dfect of the collision is to change the state to

- 1 /(1 il/a 1 (a+ib

a1 ) R A
If we call this state after the collisioi), then what we now what to check {@|¢).
Thus

HI) = — (a"—ib* —ia* +b*) L (;TE) = %((a*—ib*)(a+ib)+(—ia*+b*)(ia+b)) = |a/*+[bf.

V2 V2
But we are given that the initial staji) was normalized to unity, i.e.
W) = laf? + b = 1

so we have shown that
(9lp) = 1.



() States for which the collision has n@ect will be state$t) such that
El) = Al2)

whereA is a complex number. In this case, thféeet of E is to simply multiply|1) by

a constant factor. Recall that the state vecto) represents theame physical state

of the system for any value of the factar Thus the task is to find the eigenvectors

of E. We can do this in the usual way, that is assume the eigenstate is of the form
|4) = aln) + b|p), so we have, in matrix form

= li b=l

i

This is a pair of homogeneous equations daendb, and there will be a non-trivial
solution provided

or

(1)

YN2-2 N2 |
i/N2 o yvV2-2
which has the solutions )
/l+ — E — etlﬂ'/4
T2

We can find the associated eigenvectors by substituting the two possible valudes for
into Eq. (1) and solving foa andb. Thus, withA = 4, = (1 +i)/V2 we get

—ia/V2+ib/V2=0

which tells us that = b. We need the state to be normalized to unity, which can be
shown to require = b = 1/v2, so we end up with one eigenstate being

k)

In the same way, the other eigenstate can be shown to be

oefl)

These stated., ) are then the states for which a collision has fied.




(a) With respectto a pair of ortrlonormal vectfdnsand|2) that span the state spagéof
a certain system, the operatQlis defined by its action on these base states as follows:
QL =21 +2i2  Q2) =all)-12).
wherea is a quantity to be determined.

() What is the matrix represention (ifin the{|1), |2)} basis?

(i) Ois known to be an observable of the system. What is the value ahd why
does it have this value?

(i) Show that the states
1 . 1 .
91) = %(ID —212)) o) = %(ZID +1(2)).

are eigenstates @ and that the associated eigenvaluescare —2 andg, = 3
respectively.

(b) The system is prepared in the state

1 1+i
=—|1+—|2).
[ \/§|>+ \/:_%I)

(i) What are the possible results of a measurement of the obse®&ble
(i) What are the probabilities of obtaining each of the possible results?

(iii) What is the state of the systeaiter the measurement is performed for each of the
possible measurement outcomes?

SOLUTION
(@ (i) The matrix representation is given by

A . (Qu1 Q2
Q_(Q21 sz)

whereQ;j = (ilQl). )
By direct calculation from the above defining propertie€oft follows that

A~ (2 «a
Q:(Zi —1)

(i) As Qs an observable of the system, the oper&anust be Hermitean, so that
a=-2.
(i) The calculation can proceed by either using the matrix representation of the oper-

ator, or by carrying out the calculation in bra-ket notation. The first will be done
in the bra-ket notation. Thus, what is required is

Q) =411 - 212)
- (@D - 202)
:%[2|1> 1 2i12) - 2i(~2i1) - [2)]
:%[-m +4i12)]
= 2%[|1> - 2i|2>]

=—2|q1).



Thus,|q1) is an eigenstate dd with eigenvalue-2.
The second case will be dealt with using the column vector representatipn,of

l.e.
(e 1 (2
'q2>‘(<2|qz>)‘ vs(i)'

S R R A A R

i.e.|qp) is an eigenstate dd with eigenvalue 3.

Thus

(b) (i) The possible results are the eigenvalue®pthat is -2 or 3.

(i) The probability of getting the resutt; = —2 is given by{(ai|¥)?. So first we need
the probability amplitude

1 1+i 1 .
= — D+ —12)y = — 1 1 2)).
(ly) <Q1|{ \/§| )+ \/§| >} \/§(<Q1| )+ (L+1)(0nl2))

To calculate the inner products appearing in this expression, it is necessary to
make use of the expressions for the eigenstates in terms of the basi§ 5tds.

Thus 1
1= —(1 +2i2)11) = —
(/1) \/3« [ +2i¢2])|1) Ve
and 1 2
2= —({1+2i2)12) = —
(l2) \/3(< [ +2i12))2) N
and hence 1 1
Thus

1
[ 3

The probability of getting the resulp = 3 is calculated in a similar fashion. We
requirel(g|y)|*> which means we first need
1 1+i 1
(Qly) =< |{—I1>+—I2>}=— (Q2l1) + (1 +1){0212)).
) = (q2 7 7 \/é(QZ (1 +i)022))

The expression fojgp) gives us the corresponding expression for the bra vector
(Q2|, so we have

1 . 2
(0211) = %(2<1| — 2L = —

\5
and 1 i
2= —21-i]2)|2) = ——
(0212) \/§(<| 112))12) N
and hence 1 1
=—02-i(1+1)=—(3-1).
(Qely) \/1_5( i(L+1)) \/E( i)
Thus

2
Kply)? = 3

(iii) Ifthe resultq; = —2 is obtained, then the system ends up in the gatémmedi-
ately after the measurement, and if the regpllE 3 is obtained, the system ends
up in the statég — 2) immediately after the measurement.

5



3. (@) The negative oxygen molecular iofj Consists of a pair of oxygen atoms separated

by a distance & As an approximation, the electron can be assumed to be found only
on one or the other of the oxygen atomsxat +a.

(i) Within this approximation, write down the eigenvalue equation for the position
operatorxTor the electron.

(i) The momentunpTor the electron can be represented by>a2matrix.
A. Why would the matrix be X 2 in size?

B. Given that the matrix representing the momentum is, in the position represen-
tation ,
L 0 —ie™
P=Po jel¢ 0

show that the eigenvalues af@y and prove that the associated eigenvectors
| £ po) Of p are given by

(1 and B
|po) = 73 ie | = Po) = NASREDE
C. Show that the statés: pg) are orthonormal.

(b) The quantum system is prepared in the diate- \/ig [| +ay+ivV2 - a)] . A measure-
ment is made of the momentum and the repylis obtained.

() What is the state of the systeafter this measurement was performed?

(i) If, after the above result for the momentum was obtained, the position of the
electron was measured, what is the probability of obtaining the rea@lt

(iii) What would be the probability of getting the resui&1 if the position of the elec-
tron was measured when the system was in the original |gtgte

(iv) Could the system ever be found in a state in which the position of the electron was
X = +a and the momentum wg®? Explain your answer.
SOLUTION

(@) (i) The eigenvalues will bea.

(i) A. Asthe state space has dimension 2, all operators will be represented<d® a 2
matrix.

B. To determine the eigenvalues and eigenvectorp,dhé solution must be
found of the eigenvalue equation

plp) = pIp).

In matrix form, this equation is

nle -

-p  —ipoe™\(a _o
ipo€? -p o]

The associated equation for the eigenvalues will be

or

—-p  —ipoe™?

ipog?  —p =0
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or
p°-p5=0
which gives
P = %po.
For p = po, the equation for the cdiécientsa andb of the momentum eigen-

vector will be _
—poa—ipoe’b =0

which has the solution ‘
a=—ie"?h.

To fix the values o andb, the eigenstate must be normalized to unity, i.e.
lal® + b = 1
which yields
2a? =1

and hence 1 1
— €& and b= —ije%e?
V2 V2

whered is a phase whose value we are free to choose. If wé pud we get

a=

1 1.
a=— and b=—ie"
V2 V2
so that the eigenvector associated with the eigenvalagy will be
11

The procedure is much the same foe= —py. The equation for the cdéig-
cientsa andb of the momentum eigenvector will be

Poa—ipoe?b =0

which has the solution _
a=ie .

Using the normalization condition
lal? + bj? = 1
we get in a similar way to the previous case
1 1. .,
a=—€’ and b=-—ie’e™
2 V2
whereg is a phase whose value we are free to choose. If wé pud we get
1.
a=— and b=-—ie"

V2 V2

so that the eigenvector associated with the eigenvatde-pg will be

| - po) = %2 (_i]éiqb)‘



C. To check orthonormality we have to calculate
1 . i 1
[ _ia~ ¢ S =
(polpo) = 5 (1 —ie™ )(ie.¢) =1
Similarly, (—pol — po) = 1. Finally we need to chedlpo| — po):

1 . 1

_ - _je-i¢ )=

(pol — po) = 5 (1 ~ie” )(_ie.¢) =0

as required.

(b) (i) The state will bepg).
(i) This probability will be |(+a|po)|?. Given the expression fdpg) in part (b), this

is X
2_|Lf_1
|{-+al po)| _‘\/é =5
(i) This probability is given by
. 2
(et = [ 2] = 2
V3 3

(iv) If the system is in the stat@) and the momentum is measured, and the result
po obtained, then the system ends up in the d@fe If then the position of the
electron is measured, then the probability of getting either rasuk % Suppose
we get the resulta, which means that the system is now in the stat&), and
then remeasure the momentum. The probability of regaining the qsisitnow
| pol +a)[2, which is%, i.e. there is no guarantee that the reggltvill be observed
again —there is a probabili%/ of obtaining the resulp = —po. Thus, the system
cannot be found in a state in which the position of the electron will be observed
to have the same value whenever measured and its momentum of the system can
be observed to have the same value whenever measured.

4. For the Q of the previous question, the Hamiltonikhis such that:

Hi-a) = 1E(e™|+a) +| - a))

(a) Write down the matrix representitijin the position representation.
(b) Assuming that the state of the system at timaan be expressed as

(1)) = C. ()] + &)y + C_(1) - a),

write down the Schirdinger equation for this system in matrix form.

(c) Confirm, by direct substitution into the equations@(t) andC,(t) that the solutions
for these cofficients are

wherea andb are unknown constants and= E/#.



(d) The system isinitially, at= 0 in the staté—a). Solve for the probability of observing
the system in statie+ a) at a later tima.

(e) Atwhattimet = T would the probability of the electron being observed on the oxygen
atom at+a first be a maximum?

() Assuming it is valid to do so, analyse this result classically to estimate the momentum
that the electron would have to have in order to cross from the left hand to the right
hand atom in timel. [It turns out that the momentum of the electron can have the
magnitudepy = mEg/7. Your result here will be slightly diierent.]

SOLUTION

(a) The matrix representing will be

1 el
e )

(b) The Schodinger equation will be

1 1 e\ (Cy(t) —ihg Ca(t)
27?1 J\Ca(t)) ~ T dt\Ca(t)
(c) From the expressions given fGL (t) it follows that

_d [Cy(t o[ 1
|ha(c_8):%hwae t(é¢)

while

NI

(1 e\ (C. (1) _1,( 1 gio\( ae'“'+b
(é¢ 1 )(C_(t)) T4 ‘”(é¢ 1 ) &’ (aget - b)

2a e—iwt
1
= 3hw (Za é"’e‘i“’t)

= Jhwae! (e’l¢)
L d(C.®
=Gt (C_(t))

as required.

(d) If the system is initially in the state- a), then we have&C_(0) = 1 andC,(0) = 0. If
we substitute this into the expressions @u(t) evaluated at = O we get

C:(0)=1(a+b)=0 and C_(0)=id’(a-b)=1.
Solving these equations farandb gives
a=e and b=-¢
and hence
C_(t) = 2e (e‘i‘“t + 1) and C,(t) = le™ (e“‘“t - 1)
The probability of the system being in the stptgat a timet is then

K+ ()P = [C, () = Ljet — 112,
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When calculating this last quantity it, recall that vi? = (u+ v)(u* + v*) whereu and
v are both complex numbers. In this case this gives

. . got —iwt
)R = e - 1)@ - 1) = 4 (1 e

) = (1 - coswt).
This can also be written
K+ () = sir? Swt.

(e) The probability of observing the electronat +a will then be a maximum at a time
T such that sififwT = 1, i.e.
T=nrn/w.

(H Assuming a classical interpretation, this results suggests that the electron started out at
X = —aatatimet = 0 and arrived ak = +a at a timet = n/w. This implies an average
speed of/ = 2aw/m and hence a momentum of

_ 2Zawm  2mEa

7 n h

as compared tpg = mEg/7 that can be shown to be the case in the previous question.
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