
PHYSICS 301 QUANTUM PHYSICS I (2006)

Assignment 3 Solutions

1. In so-called isospin theory, the neutron and the proton are assumed to be two different states,
|n〉 and |p〉 respectively, of the one particle called the nucleon. Suppose as a result of a
collision betwen a nucleon and another particle, the state of the nucleon undergoes a change
represented by the operatorÊ defined by

Ê|n〉 =
(
|n〉 + i|p〉

/√
2

Ê|p〉 =
(
i|n〉 + |p〉

)
/
√

2

which ‘mixes’ the two states|n〉 and|p〉.

(a) Suppose a neutron suffers such a collision. What is the probability that the nucleon
could still be observed to be a neutron after the collision?

(b) Construct the matrix representation ofÊ in the{|n〉, |p〉} basis.

(c) (i) Write the state|ψ〉 =
(
|n〉 − 2i|p〉

)
/
√

5 as a column vector, and determine the new
state of the system after the collision has occurred.

(ii) Write the bra vector〈ψ| as a row vector, and hence show that the probability the
nucleon could be observed in the state|ψ〉 after the collision is non-zero. Evaluate
this probability.

(d) Show thatÊÊ† = 1̂ where1̂ is the unit operator.

(e) If the nucleon is in an arbitrary state|ψ〉 = a|n〉 + b|p〉 before a collision, what is its
state after the collision? If|ψ〉 is normalized to unity, show that the state of the system
after the collision is still normalized to unity.

(f) Do there exist states of the nucleon for which the collision does not change the state?
If so, determine what the state or states are that have this property.

SOLUTION

(a) If the particle is initially a neutron, i.e. initially in the state|n〉, then after the collision,
it will be in the state

Ê|n〉 =
(
|n〉 + i|p〉

)
/
√

2.

The probability that it will be observed to be a neutron after the collision will then be

|〈n|{Ê|n〉}|2 =
1
2
〈n|

{
|n〉 + i|p〉

}
= 1

2.

(b) Using the ordering defined by

Ê �

(
〈n|Ê|n〉 〈n|Ê|p〉
〈p|Ê|n〉 〈p|Ê|p〉

)
we get

Ê �
1
√

2

(
1 i
i 1

)
.
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(c) (i) As a column vector, the state|ψ〉 =
(
|n〉 − 2i|p〉

)
/
√

5 is, (with the states ordered as
in part (b))

|ψ〉 �

(
〈n|ψ〉
〈p|ψ〉

)
=

1
√

5

(
1
−2i

)
.

The state of the particle after the collision has occurred will then be

Ê|ψ〉 �
1
√

2

(
1 i
i 1

)
1
√

5

(
1
−2i

)
=

1
√

10

(
3
−i

)
which can also be written as

Ê|ψ〉 =
1
√

10

(
3|n〉 − i|p〉

)
.

(ii) The probability of the particle being observed in the state|ψ〉 after the collision
will be |〈ψ|Ê|ψ〉|2. Thus we need to calculate

〈ψ|Ê|ψ〉 =
1
√

5

(
1 2i

) 1
√

10

(
3
−i

)
=

5
√

50
=

1
√

2
.

Consequently the required probability is

|〈ψ|Ê|ψ〉|2 = 0.5.

(d) Since, from part (b), we have

Ê �
1
√

2

(
1 i
i 1

)
we immediately have

Ê† �
1
√

2

(
1 −i
−i 1

)
and hence

ÊÊ† �
1
√

2

(
1 i
i 1

)
1
√

2

(
1 −i
−i 1

)
=

(
1 0
0 1

)
.

(e) The state before the collision is|ψ〉 = a|n〉+b|p〉 which can be represented as a column
matrix

|ψ〉 �

(
a
b

)
.

The effect of the collision is to change the state to

Ê|ψ〉 =
1
√

2

(
1 i
i 1

) (
a
b

)
=

1
√

2

(
a+ ib
ia + b

)
.

If we call this state after the collision|φ〉, then what we now what to check is〈φ|φ〉.
Thus

〈φ|φ〉 =
1
√

2

(
a∗ − ib∗ −ia∗ + b∗

) 1
√

2

(
a+ ib
ia + b

)
=

1
2

((a∗−ib∗)(a+ib)+(−ia∗+b∗)(ia+b)) = |a|2+|b|2.

But we are given that the initial state|ψ〉 was normalized to unity, i.e.

〈ψ|ψ〉 = |a|2 + |b|2 = 1

so we have shown that
〈φ|φ〉 = 1.
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(f) States for which the collision has no effect will be states|λ〉 such that

Ê|λ〉 = λ|λ〉

whereλ is a complex number. In this case, the effect of Ê is to simply multiply|λ〉 by
a constant factor. Recall that the state vectorc|ψ〉 represents thesame physical state
of the system for any value of the factorc. Thus the task is to find the eigenvectors
of Ê. We can do this in the usual way, that is assume the eigenstate is of the form
|λ〉 = a|n〉 + b|p〉, so we have, in matrix form

Ê|λ〉 =
1
√

2

(
1 i
i 1

) (
a
b

)
= λ

(
a
b

)
or (

1/
√

2− λ i/
√

2
i/
√

2 1/
√

2− λ

) (
a
b

)
= 0. (1)

This is a pair of homogeneous equations fora andb, and there will be a non-trivial
solution provided ∣∣∣∣∣∣1/

√
2− λ i/

√
2

i/
√

2 1/
√

2− λ

∣∣∣∣∣∣ = 0

which has the solutions

λ± =
1± i
√

2
= e±iπ/4.

We can find the associated eigenvectors by substituting the two possible values forλ

into Eq. (1) and solving fora andb. Thus, withλ = λ+ = (1+ i)/
√

2 we get

−ia/
√

2+ ib/
√

2 = 0

which tells us thata = b. We need the state to be normalized to unity, which can be
shown to requirea = b = 1/

√
2, so we end up with one eigenstate being

|λ+〉 �
1
√

2

(
1
1

)
.

In the same way, the other eigenstate can be shown to be

|λ−〉 �

(
1
−1

)
.

These states|λ±〉 are then the states for which a collision has no effect.
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2. (a) With respect to a pair of orthonormal vectors|1〉 and|2〉 that span the state spaceH of
a certain system, the operatorQ̂ is defined by its action on these base states as follows:

Q̂|1〉 = 2|1〉 + 2i|2〉 Q̂|2〉 = α|1〉 − |2〉.

whereα is a quantity to be determined.

(i) What is the matrix represention of̂Q in the{|1〉, |2〉} basis?
(ii) Q̂ is known to be an observable of the system. What is the value ofα, and why

does it have this value?
(iii) Show that the states

|q1〉 =
1
√

5

(
|1〉 − 2i|2〉

)
|q2〉 =

1
√

5

(
2|1〉 + i|2〉

)
.

are eigenstates of̂Q and that the associated eigenvalues areq1 = −2 andq2 = 3
respectively.

(b) The system is prepared in the state

|ψ〉 =
1
√

3
|1〉 +

1+ i
√

3
|2〉.

(i) What are the possible results of a measurement of the observableQ?
(ii) What are the probabilities of obtaining each of the possible results?

(iii) What is the state of the systemafter the measurement is performed for each of the
possible measurement outcomes?

SOLUTION

(a) (i) The matrix representation is given by

Q̂ �

(
Q11 Q12

Q21 Q22

)
whereQi j = 〈i|Q̂| j〉.
By direct calculation from the above defining properties ofQ̂, it follows that

Q̂ �

(
2 α

2i −1

)
(ii) As Q̂ is an observable of the system, the operatorQ̂ must be Hermitean, so that

α = −2i.
(iii) The calculation can proceed by either using the matrix representation of the oper-

ator, or by carrying out the calculation in bra-ket notation. The first will be done
in the bra-ket notation. Thus, what is required is

Q̂|q1〉 =Q̂
1
√

5

(
|1〉 − 2i|2〉

)
=

1
√

5

(
Q̂|1〉 − 2iQ̂|2〉

)
=

1
√

5

[
2|1〉 + 2i|2〉 − 2i(−2i|1〉 − |2〉)

]
=

1
√

5

[
−2|1〉 + 4i|2〉

]
= − 2

1
√

5

[
|1〉 − 2i|2〉

]
= − 2|q1〉.
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Thus,|q1〉 is an eigenstate of̂Q with eigenvalue−2.
The second case will be dealt with using the column vector representation of|q2〉,
i.e.

|q2〉 �

(
〈1|q2〉

〈2|q2〉

)
=

1
√

5

(
2
i

)
.

Thus

Q̂|q2〉 =

(
2 −2i
2i −1

)
1
√

5

(
2
i

)
=

1
√

5

(
6
3i

)
= 3

1
√

5

(
2
i

)
� 3|q2〉

i.e. |q2〉 is an eigenstate of̂Q with eigenvalue 3.

(b) (i) The possible results are the eigenvalues ofQ̂, that is -2 or 3.

(ii) The probability of getting the resultq1 = −2 is given by|〈q1|ψ〉|
2. So first we need

the probability amplitude

〈q1|ψ〉 = 〈q1|

{
1
√

3
|1〉 +

1+ i
√

3
|2〉

}
=

1
√

3

(
〈q1|1〉 + (1+ i)〈q1|2〉

)
.

To calculate the inner products appearing in this expression, it is necessary to
make use of the expressions for the eigenstates in terms of the basis states{|1〉, |2〉}.
Thus

〈q1|1〉 =
1
√

5

(
〈1| + 2i〈2|

)
|1〉 =

1
√

5

and

〈q1|2〉 =
1
√

5

(
〈1| + 2i|2〉

)
|2〉 =

2i
√

5

and hence

〈q1|ψ〉 =
1
√

15
(1+ 2i(1+ i)) =

1
√

15
(−1+ 2i).

Thus

|〈q1|ψ〉|
2 =

1
3
.

The probability of getting the resultq2 = 3 is calculated in a similar fashion. We
require|〈q2|ψ〉|

2 which means we first need

〈q2|ψ〉 = 〈q2|

{
1
√

3
|1〉 +

1+ i
√

3
|2〉

}
=

1
√

3

(
〈q2|1〉 + (1+ i)〈q2|2〉

)
.

The expression for|q2〉 gives us the corresponding expression for the bra vector
〈q2|, so we have

〈q2|1〉 =
1
√

5

(
2〈1| − i〈2|

)
|1〉 =

2
√

5

and

〈q2|2〉 =
1
√

5

(
2〈1| − i|2〉

)
|2〉 = −

i
√

5

and hence

〈q2|ψ〉 =
1
√

15
(2− i(1+ i)) =

1
√

15
(3− i).

Thus

|〈q2|ψ〉|
2 =

2
3
.

(iii) If the resultq1 = −2 is obtained, then the system ends up in the state|q1〉 immedi-
ately after the measurement, and if the resultq2 = 3 is obtained, the system ends
up in the state|q− 2〉 immediately after the measurement.
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3. (a) The negative oxygen molecular ion O−2 consists of a pair of oxygen atoms separated
by a distance 2a. As an approximation, the electron can be assumed to be found only
on one or the other of the oxygen atoms, atx = ±a.

(i) Within this approximation, write down the eigenvalue equation for the position
operator ˆx for the electron.

(ii) The momentum ˆp for the electron can be represented by a 2× 2 matrix.

A. Why would the matrix be 2× 2 in size?

B. Given that the matrix representing the momentum is, in the position represen-
tation

p̂ � p0

(
0 −ie−iφ

ieiφ 0

)
show that the eigenvalues are±p0 and prove that the associated eigenvectors
| ± p0〉 of p̂ are given by

|p0〉 �
1
√

2

(
1

ieiφ

)
and | − p0〉 �

1
√

2

(
1
−ieiφ

)
.

C. Show that the states| ± p0〉 are orthonormal.

(b) The quantum system is prepared in the state|ψ〉 = 1√
3

[
| + a〉 + i

√
2| − a〉

]
. A measure-

ment is made of the momentum and the resultp0 is obtained.

(i) What is the state of the systemafter this measurement was performed?

(ii) If, after the above result for the momentum was obtained, the position of the
electron was measured, what is the probability of obtaining the result+a?

(iii) What would be the probability of getting the result−a if the position of the elec-
tron was measured when the system was in the original state|ψ〉?

(iv) Could the system ever be found in a state in which the position of the electron was
x = +a and the momentum wasp0? Explain your answer.

SOLUTION

(a) (i) The eigenvalues will be±a.

(ii) A. As the state space has dimension 2, all operators will be represented by a 2×2
matrix.

B. To determine the eigenvalues and eigenvectors of ˆp, the solution must be
found of the eigenvalue equation

p̂|p〉 = p|p〉.

In matrix form, this equation is

p̂ � p0

(
0 −ie−iφ

ieiφ 0

) (
a
b

)
= p

(
a
b

)
or (

−p −ip0e−iφ

ip0eiφ −p

) (
a
b

)
= 0.

The associated equation for the eigenvalues will be∣∣∣∣∣∣ −p −ip0e−iφ

ip0eiφ −p

∣∣∣∣∣∣ = 0
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or
p2 − p2

0 = 0

which gives
p = ±p0.

For p = p0, the equation for the coefficientsa andb of the momentum eigen-
vector will be

−p0a− ip0e−iφb = 0

which has the solution
a = −ie−iφb.

To fix the values ofa andb, the eigenstate must be normalized to unity, i.e.

|a|2 + |b|2 = 1

which yields
2|a|2 = 1

and hence

a =
1
√

2
eiθ and b =

1
√

2
ieiφe−iθ

whereθ is a phase whose value we are free to choose. If we putθ = 0 we get

a =
1
√

2
and b =

1
√

2
ieiφ

so that the eigenvector associated with the eigenvaluep = p0 will be

|p0〉 �
1
√

2

(
1

ieiφ

)
.

The procedure is much the same forp = −p0. The equation for the coeffi-
cientsa andb of the momentum eigenvector will be

p0a− ip0e−iφb = 0

which has the solution
a = ie−iφb.

Using the normalization condition

|a|2 + |b|2 = 1

we get in a similar way to the previous case

a =
1
√

2
eiθ and b = −

1
√

2
ieiφe−iθ

whereθ is a phase whose value we are free to choose. If we putθ = 0 we get

a =
1
√

2
and b = −

1
√

2
ieiφ

so that the eigenvector associated with the eigenvaluep = −p0 will be

| − p0〉 �
1
√

2

(
1
−ieiφ

)
.
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C. To check orthonormality we have to calculate

〈p0|p0〉 =
1
2

(
1 −ie−iφ

) ( 1
ieiφ

)
= 1.

Similarly, 〈−p0| − p0〉 = 1. Finally we need to check〈p0| − p0〉:

〈p0| − p0〉 =
1
2

(
1 −ie−iφ

) ( 1
−ieiφ

)
= 0

as required.

(b) (i) The state will be|p0〉.

(ii) This probability will be |〈+a|p0〉|
2. Given the expression for|p0〉 in part (b), this

is

|〈+a|p0〉|
2 =

∣∣∣∣∣∣ 1
√

2

∣∣∣∣∣∣2 = 1
2
.

(iii) This probability is given by

|〈−a|ψ〉|2 =

∣∣∣∣∣∣ i
√

2
√

3

∣∣∣∣∣∣
2

=
2
3

(iv) If the system is in the state|ψ〉 and the momentum is measured, and the result
p0 obtained, then the system ends up in the state|p0〉. If then the position of the
electron is measured, then the probability of getting either result±a is 1

2. Suppose
we get the result+a, which means that the system is now in the state| + a〉, and
then remeasure the momentum. The probability of regaining the resultp0 is now
|〈p0|+a〉|2, which is 1

2, i.e. there is no guarantee that the resultp0 will be observed
again – there is a probability12 of obtaining the resultp = −p0. Thus, the system
cannot be found in a state in which the position of the electron will be observed
to have the same value whenever measured and its momentum of the system can
be observed to have the same value whenever measured.

4. For the O−2 of the previous question, the Hamiltonian̂H is such that:

Ĥ| + a〉 = 1
2E

(
| + a〉 + eiφ| − a〉

)
Ĥ| − a〉 = 1

2E
(
e−iφ| + a〉 + | − a〉

)
(a) Write down the matrix representinĝH in the position representation.

(b) Assuming that the state of the system at timet can be expressed as

|ψ(t)〉 = C+(t)| + a〉 +C−(t)| − a〉,

write down the Schr̈odinger equation for this system in matrix form.

(c) Confirm, by direct substitution into the equations forC1(t) andC2(t) that the solutions
for these coefficients are

C+(t) = 1
2

(
ae−iωt + b

)
C−(t) = 1

2eiφ
(
ae−iωt − b

)
wherea andb are unknown constants andω = E/~.
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(d) The system is initially, att = 0 in the state|−a〉. Solve for the probability of observing
the system in state| + a〉 at a later timet.

(e) At what timet = T would the probability of the electron being observed on the oxygen
atom at+a first be a maximum?

(f) Assuming it is valid to do so, analyse this result classically to estimate the momentum
that the electron would have to have in order to cross from the left hand to the right
hand atom in timeT. [It turns out that the momentum of the electron can have the
magnitudep0 = mEa/~. Your result here will be slightly different.]

SOLUTION

(a) The matrix representinĝH will be

1
2E

(
1 e−iφ

eiφ 1

)
(b) The Schr̈odinger equation will be

1
2E

(
1 e−iφ

eiφ 1

) (
C1(t)
C2(t)

)
= i~

d
dt

(
C1(t)
C2(t)

)
(c) From the expressions given forC±(t) it follows that

i~
d
dt

(
C+(t)
C−(t)

)
= 1

2~ωa e−iωt
(

1
eiφ

)
while

1
2E

(
1 e−iφ

eiφ 1

) (
C+(t)
C−(t)

)
= 1

4~ω

(
1 e−iφ

eiφ 1

)  ae−iωt + b
eiφ

(
ae−iωt − b

)
= 1

4~ω

(
2a e−iωt

2a eiφe−iωt

)
= 1

2~ωa e−iωt
(

1
eiφ

)
= i~

d
dt

(
C+(t)
C−(t)

)
as required.

(d) If the system is initially in the state| − a〉, then we haveC−(0) = 1 andC+(0) = 0. If
we substitute this into the expressions forC±(t) evaluated att = 0 we get

C+(0) = 1
2(a+ b) = 0 and C−(0) = 1

2eiφ(a− b) = 1.

Solving these equations fora andb gives

a = e−iφ and b = −e−iφ

and hence

C−(t) = 1
2e−iφ

(
e−iωt + 1

)
and C+(t) = 1

2e−iφ
(
e−iωt − 1

)
The probability of the system being in the state|+〉 at a timet is then

|〈+|ψ(t)〉|2 = |C+(t)|
2 = 1

4 |e
−iωt − 1|2.
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When calculating this last quantity it, recall that|u+ v|2 = (u+ v)(u∗ + v∗) whereu and
v are both complex numbers. In this case this gives

|〈+|ψ(t)〉|2 = 1
4(e−iωt − 1)(eiωt − 1) = 1

2

(
1−

eiωt + e−iωt

2

)
= 1

2

(
1− cosωt

)
.

This can also be written
|〈+|ψ(t)〉|2 = sin2 1

2ωt.

(e) The probability of observing the electron atx = +a will then be a maximum at a time
T such that sin2 1

2ωT = 1, i.e.
T = π/ω.

(f) Assuming a classical interpretation, this results suggests that the electron started out at
x = −a at a timet = 0 and arrived atx = +a at a timet = π/ω. This implies an average
speed ofv = 2aω/π and hence a momentum of

p =
2aωm
π
=

2
π

mEa
~

as compared top0 = mEa/~ that can be shown to be the case in the previous question.
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