
PHYSICS 301 QUANTUM PHYSICS I (2007)

Assignment 1 Solutions

1. (a) Buckminsterfullerene molecules (buckyballs) are molecules made up of 60 car-
bon atom arranged to form a geodesic sphere. Suppose that buckyballs are sent
at a velocity of 100 ms−1 through a twin slit arrangement in which the slits
are separated by a distance of 150 nm. The buckyballs then strike an obser-
vation screen placed a further 1.25 m past the slits. Calculate the de Broglie
wavelength of the buckyballs (i.e. treat them as if they were quantum objects).
Assuming the molecules are point objects, estimate the distance between the
maxima of the resultant interference pattern on the screen.

(b) Given that a buckyball has a diameter of approximately 1 nm, how does the
size of the buckyball compare with the distance between neighbouring maxima
of the interference pattern. Is the size of the C60 molecule likely to effect
the visibility of the interference fringes? At what velocity for the molecules
would the interference fringes start to become difficult to detect? [This is an
experiment that has been done, though with a diffraction grating rather than
just two slits.]

SOLUTION

(a) Using the standard result from two-
slit interference theory, the phase
difference between the two waves
reaching the screen at position x is

δ =
2πd sin θ

λ
.

where λ is the wavelength of the
waves. The geometry of the situa-
tion is illustrated in the accompa-
nying figure.
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For the observation screen sufficiently far from the slits, the approximation can
be made that

sin θ ≈ tan θ =
x

D

where D is the distance from the screen with the slits to the observation screen.
Thus

δ =
2πdx
Dλ

.

Maxima will occur when δ = 2nπ where n is an integer. Thus the separation
∆x between the maxima will be

2π∆n =
2πd∆x
Dλ

i.e. with ∆n = 1 we get
∆x = Dλ/d.
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The mass of buckyball will be m = 60× 12× 1.66× 10−27 = 1.1952× 10−23 kg,
so that the wavelength of the de Broglie waves will be

λ =
h

p
=

h

mv
= 5.5458× 10−12 m.

Thus the maxima will be separated by a distance ∆x given by

∆x =
Dλ

d
= 4.6215× 10−5 m.

Thus the separation between fringes will be much larger than the size of each
buckyball, so the fringes will not be obscured by the size of the molecules.

(b) In order for the fringe separation to be comparable to the molecular dimensions,
a fringe separation of 1 nm is required, which is 2.16 × 10−5 smaller than the
fringe separation for a velocity of 117 ms−1. As the fringe separation is inversely
proportional to the velocity, to produce fringes of 1 nm, it is therefore necessary
for the molecules to be moving at a velocity of 100/2.16 × 10−5 = 4.62 × 106

ms−1 which is an extremely high velocity that would require the use of a particle
accelerator.

2. Electrons are fired through a two slit interference arrangement, ultimately striking
a photographic plate where each electron leaves a permanent mark on the plate.
After the experiment is completed, the following data is collected for the number
of electrons detected in positions lying in the intervals (n∆x, (n + 1)∆x) where
n = −11,−10, . . . , 9, 10 and ∆x = 1 mm.

n -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1
detections 4 6 28 22 30 60 169 100 133 148 300

n 0 1 2 3 4 5 6 7 8 9 10
detections 307 147 130 105 161 59 36 21 25 6 3

(a) Construct a histogram that plots P (x) = ∆N/N∆x as a function of x.

(b) Estimate the positions where the probability is a maximum for a particle to
strike the screen.

(c) Given that the slit separation is 1 nm, and the observation screen is 1 m from the
slits, estimate the wavelength of the waves producing the interference pattern.

(d) What is the velocity of the electrons used in the experiment?

(e) If the width of each slit is 0.4 nm, draw a sketch of what the histogram might
look like if the slit through which each electron passed was observed. You will
have to take into account both the interference and diffraction patterns patterns
produced by the slits. [Recall that the interference pattern produced by a pair
of identical slits is the product of the interference pattern produced by two
point sources multiplied by the diffraction pattern produced by a single slit on
its own.]

(f) Bob, who was hired to watch the slits, gets bored, replaces the photographic
plate with a new one, and wanders off to have lunch, leaving a laboratory rat to
watch the slits in his absence. The electrons build up a pattern on the screen.
On his return, will Bob see an interference pattern on the photographic plate?
Will he be able to tell, from the pattern he sees, whether or not the rat actually
watched the slits?
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SOLUTION

(a) The total number of detections is N = 2000, and with ∆x = 10−3 m, the
required values for P (x) = ∆N/N∆x are obtained from the given table simply
by dividing the number of detections in each interval by 2. Thus the data to
be plotted are as follows

n -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1
∆N/N∆x 2 3 14 11 15 30 84.5 50 66.5 74 150

n 0 1 2 3 4 5 6 7 8 9 10
∆N/N∆x 153.5 73.5 65 52.5 80.5 24.5 18 10.5 12.5 3 1.5

and the required histogram is:
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(b) The maxima of the histogram occur at x = 0 mm and at x = ±4.5 mm and
again, possibly, at x = ±8.5 mm.

(c) The phase difference between the waves from the two slits is given by

δ =
2πd sin θ

λ
.

With reference to the diagram
of the interference experiment
setup, it can be seen that if
the observation screen is well re-
moved from the screen with the
slits, then sin θ can be approxi-
mated by

sin θ ≈ tan θ =
x

D

so that

δ ≈ 2πdx
Dλ

.
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Maxima will occur when δ = 2nπ where n is an integer. The central maximum
occurs for n = 0, while the next nearest maxima occur when n = ±1. This
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occurs, from the histogram, at x = ±4.5 mm. Given that d = 1 nm and D = 1
m, then with δ = 2π so that x = 4.5 mm, then dx/D is 4.5× 10−12 m2 and we
have

λ ≈ 4.5× 10−12 m.

(d) From the de Broglie relation λ = h/p, and since p = mv, then

v = h/mλ = 1.6× 108 ms−1

which is about half the speed of light, so, strictly speaking, the relativistic
formula for momentum should be used.

(e) When the slit through which the electrons pass is observed, there is no interfer-
ence pattern. Instead, the electrons will pass through each slit as if the other
were not there. If we are able to determine through which slit each electron
passes, but not through where in each slit, then the electrons will continue to
behave like waves when passing through each slit, thereby forming a single slit
diffraction pattern whose principal maximum will be directly opposite each slit.
From the theory of diffraction through a pair of slits, the intensity distribution
of interference pattern due to two slits of equal width is modulated by the
diffraction pattern produced by one slit. This diffraction pattern will have a
first minimum at w sin θ = ±λ where w is the width of the slit. Given that the
width of each slit is 0.4 nm, then we would expect the first minimum of the
diffraction pattern would occur at

x = D sin θ = Dλ/w = 4.5× 10−12/0.4× 10−9 = 0.11 m

i.e. at a distance of 11 mm from the central maximum. This is indeed where
the diffraction pattern given by the histogram has a minimum.
Thus, if we observe through which slit each electron passes, what will be pro-
duced are separate diffraction patterns for each slit which will simply add to-
gether. As the slits are separated by a distance of 1 nm, the peaks of these two
diffraction patterns will also be separated by 1 nm, and hence on the scale of
resolution of the detection of electrons δx = 1 mm, these two peaks will not
be distinguishable. Thus the nett effect will be to fill in the minima of the
interference pattern, and diminish the height of the one observable centre peak.
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(f) In order for Bob to watch the slits, there was presumably, shining on the slits, a
light source so designed that an observer would be able to determine which slit
the electron passed through. The photons from this source would be scattered
by the electrons coming through the slits, thereby carrying away with them
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information on which slit the electron went through. Whether or not Bob is
there to watch the slits, or whether or not the laboratory rat takes his place,
or indeed if nothing is there, is irrelevant. The simple fact that ‘which slit’
information has been encoded on another system and is in principle available
to be observed is enough for the interference pattern to be erased.

3. In the two slit experiment, it is found that at a pointQ directly opposite the midpoint
between the two slits, the probability of an electron striking Q if slit 2 is closed is
P1 = p.

(a) Assuming the source of electrons is symmetrically positioned with respect to
the slits, what is the probability P2 of an electron striking Q if slit 1 is closed?

(b) What would be the probability of an electron striking Q if both slits were open,
but the slit through which each electron passed was observed? Explain your
reasoning.

(c) What is the probability amplitude of an electron striking the point Q if both
slits are open but the slit through which the electrons pass is not observed. Is
the probability of an electron striking the point Q increased or decreased as
compared to part (b). By what factor does this probability change?

(d) At a second point Q′ very close to Q, it is found that to a good approximation,
the values of P1 and P2 are the same as their values at Q. It is then found
that with both slits open, the probability of an electron striking the point
Q′ is unchanged as compared to the probability if the slit through which the
each electron passes was observed. By using an argument based on probability
amplitudes, explain how can this occur.

SOLUTION

(a) By symmetry, the probability P2 = p.

(b) If the slit through which the particle passes is observed, then the probability
of the particle arriving at point Q on the screen is just the sum of the two
probabilities P1 and P2, i.e. P1 + P2 = 2p.

(c) The probability of the particle arriving at point Q will be just the square of
the probability amplitude, i.e. P1 = p = |ψ1|2 and P2 = p = |ψ2|2. Once again,
by symmetry, it must be the case that ψ1 = ψ2 =

√
peiφ, where φ is some

phase factor (that we do not know, but do not need to know in this case). If
the slit through which the particle passes is not observed, then the probability
amplitude of the particle being observed at Q is just the sum of the probability
amplitudes associated with the particle passing through one or the other of the
two slits, i.e. ψ1 +ψ2 = 2

√
peiφ. The probability of the particle being observed

at Q is then P12 = |ψ1 + ψ2|2 = 4p, which is twice the probability found when
the slit through which the particle passes is observed.

(d) For the point Q′ close to Q, the symmetry between ψ1 and ψ2 is lost, so that
we must put ψ1 =

√
peiφ1 and ψ2 =

√
peiφ2 where φ1 6= φ2 in general. In this

case, the probability of a particle being observed at Q′ will be

|ψ1 + ψ2|2 = p|eiφ1 + eiφ2 |2 = 2p [1 + cos(φ2 − φ1)]

where the cos term represents interference between the contributing probability
amplitudes. If the detection probability at this point is still 2p, i.e. the same
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as it is if the slits through which the electron passes is observed, then we must
have cos(φ2 − φ1) = 0, i.e. φ2 − φ1 = π/2.

4. In the discussion of the two slit experiment, the fact that the electrons have spin is
usually ignored. Suppose however that the experiment is performed in the following
fashion. A beam of spin half particles (e.g. silver atoms) heading in the y direction
passes through a Stern-Gerlach apparatus and the separate beams corresponding to
Sz = ±1

2 h̄ then pass through two separate slits.

X

Sx = 1
2!

Figure 1: A 2D representation of the experiment. The Stern-Gerlach apparatus with a dotted
outline is the apparatus that is inserted as described in part (c). In part (d), this apparatus is
activated after the atoms have passed through the first Stern-Gerlach apparatus, but before they
reach the second.

The atoms then strike an observation screen. Now consider the following four sce-
narios, and give an explanation in each case for your answers:

(a) Will an interference pattern be formed on the screen?
(b) Suppose a magnetic field is set up across one of the slits of just the right strength

to invert the spin of the atoms as they pass through the slit. Will an interference
pattern be observed in this case?

(c) [The quantum eraser] Suppose, instead, that a further Stern-Gerlach apparatus
with magnetic field in the x direction is set up in the region after the two slits,
but before the observation screen, such that only atoms for which Sx = 1

2 h̄
direction reach the screen. Will there be any interference pattern observed in
this case?

(d) [The delayed-choice experiment] Suppose that the magnetic field in the second
Stern-Gerlach apparatus is turned on after the atoms have left the first screen
with the two slits, but before they reach the second Stern-Gerlach apparatus.
Will there be an interference pattern in this case?
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Quantum Eraser Using Spin-1/2 Particles

Tabish Qureshi∗ and Zini Rehman†

Department of Physics, Jamia Millia Islamia, New Delhi-110025, INDIA.

Most of the experimental realizations of quantum eraser till now, use photons. A new setup
to demonstrate quantum eraser is proposed, which uses spin-1/2 particles in a modified Stern-
Gerlach setup, with a double slit. When the which-way information is erased, the result displays
two interference patterns which are transverse shifted. Use of the classic Stern-Gerlach setup, and
the unweaving of the washed out interference without any coincident counting, is what makes this
proposal novel.

PACS numbers: 03.65.Ud ; 03.65.Ta

It is well known that particles and light both, are ca-
pable of exhibiting a dual nature. This is commonly re-
ferred to as wave-particle duality. What is not empha-
sized commonly, is the fact that these natures are mu-
tually exclusive - for example, light can act either as a
particle, or as a wave at a time. This has its foundation
in Bohr’s complementarity principle [1]. It can be best
understood in the context of Young’s double slit experi-
ment with particles. Complementarity principle implies
that in such an experiment, there is a fundamental in-
compatibility between the “Welcher-Weg”, or which-way
information and the observation of interference pattern.
Thus any attempt to obtain information about which slit
the particle went through, necessarily destroys the inter-
ference pattern. Replying to Einstein’s famous thought
experiment regarding a recoiling double-slit, Bohr had
demonstrated that the uncertainty in the initial position
of the double-slit is precisely enough to wash out the in-
terference pattern.

However, it turns out that it was just fortuitous that
the uncertainty principle seemed to wash out the inter-
ference pattern. It has been argued that one could have
the which-way information without appreciably affecting
the spatial part of the wave function of the particle [2].
This can be done by entanglement of the particle with
a variable, playing the role of a which-way marker. So,
uncertainty principle is not the fundamental reason for
washing out of interference in a double-slit experiment -
entanglement is.

The double-slit experiment, with entanglement can be
understood in the following way. Let us now assume
that the initial state of the particle was entangled with a
certain degree of freedom so that the state can be written
as:

|ψ(r)〉 =
1√
2
[|ψ1(r)〉|1〉 + |ψ2(r)〉|2〉], (1)

where |1〉 and |2〉 are certain normalized and orthogo-
nal states, and |ψ1〉 and |ψ2〉 represent possibilities of

∗Email: tabish@jamia-physics.net
†Email: zini@jamia-physics.net
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FIG. 1: Schematic diagram of proposed quantum eraser.
Magnet 1 splits the beam into two so that they impinge on the
double-slit. Magnet 2 splits the interfering beams by pulling
apart the eigenstates of the x-component of the spin.

the particle going through one or the other slit. It is
easy to see that when one calculates probability distri-
bution of the particle on the screen |ψ(r)|2, the cross-
terms, ψ∗

1(r)ψ2(r) and ψ∗
2(r)ψ1(r), which are responsible

for interference, are killed by the orthogonality of |1〉 and
|2〉.

An interesting idea was put forward by Jaynes [3], and
later independently by Scully and Drühl [2] saying that
if the which-way information is stored in quantum de-
tectors, it could also be erased by a suitable “reading
out” of the detectors. In this situation, it should be
possible to get back the interference. This came to be
known as the quantum eraser [2, 3]. Scully, Englert and
Walther proposed an experiment with Rydberg atoms,
with micro-maser cavity detectors acting as which-way
markers. They argued that if one were to perform a cor-
related measurement of the two detectors in such a way
that the which-way information is lost, the interference
pattern will be visible again [4].

Quantum eraser has been experimentally realized by
various people using photons [5, 6, 7, 8, 9, 10, 11], mainly
because it is easy to produce entangled photons via spon-
taneous parametric down conversion (SPDC). There have
been some other proposals regarding NMR analogue of
quantum eraser [12], neutral kaons [13] and cavity QED
[14].

Here we propose an implementation of quantum eraser
using a modified Stern-Gerlach setup with spin-1/2 par-

Figure 2: The above diagram illustrates in 3D what the experimental arrangement would look
like.

[Note that the above experiments are more easily done (and have been done) with
photons, photon polarization, and polarizers rather than with atoms, spin, and mag-
netic fields.]

SOLUTION

The important issue in dealing with these questions is whether or not it is possible to
determine from the silver atoms that strike the observation screen what the path was
that they followed between entering the Stern-Gerlach apparatus and arriving at the
screen. If there is no information available to an observer on what the path might
be, then it is necessary to suppose that each silver atom ‘probes’ all the available
pathways (in this case two), so that the observed probability of arrival at a particular
point on the observation screen will then be the square of the sum of the probability
amplitudes for the atoms to follow each pathway, this leading to an interference
effect being observed. On the other hand, if there is any such information (even in
principle) then there will be no interference pattern.

(a) In this case, an atom arriving at the observation screen will carry with it either
spin up or spin down, so when it arrives, we will be able to say for certain which
slit the atom passed through, so there will be no interference pattern.

(b) If we have a magnetic field present at one of the slits, say the slit through
which the spin up atoms pass, which rotates this spin to spin down, then
when an atom arrives at the observation screen, it will always be observed
to have spin down, so we cannot determine through which slit the atom passed.
Thus we will expect to see an interference pattern. If, however, the fact that
the spin is rotated as it passes through the slit produces a ‘back-reaction’ on
the equipment producing the magnetic field – say a microscopic current pulse
occurs through some inductive effect as the spin is rotated, then we would have
a record that an atom had passed through this slit, so in this case we would not
see an interference pattern. But on the other hand, this information is likely
to be erased by decoherence effects unless exceedingly careful experimental
arrangements are in place, so the nett result is that an interference pattern
would be observed.

(c) As this magnetic field affects the atoms in the same way irrespective of the slit
through which it passes, then the spins of the atoms are the same irrespective
of the slit that they passed through, we cannot determine the path that the
atoms followed, so the result is an interference pattern will be observed.
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(d) The answer is that the interference pattern is restored if the information is
erased, exactly as in the case of the quantum eraser. Erasing the which path
information before the final measurement of the position of the atom in the
observation screen is sufficient to guarantee that there will be an interference
pattern. The confounding issue is, of course, that the atom is being made to
act like a particle or a wave, depending on the whim of the experimenter, after
the atom has passed through that part of the experimental apparatus where
the difference between acting like a particle (i.e. going through one slit only) or
like a wave (i.e. going through both slits) would appear to have been settled.
This is bizarrely counter-intuitive result for which there is no classical physics
explanation.
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