
PHYSICS 301 QUANTUM PHYSICS I (2006)

Assignment 1 Solutions

1. (a) Buckyballs are molecules made up of 60 carbon atoms arranged to form a
geodesic sphere. Suppose that buckyballs are sent at a velocity of 100 ms−1

through a twin slit arrangement in which the slits are separated by a distance
of 150 nm. The buckyballs then strike an observation screen placed a further
1.25 m past the slits. Calculate the de Broglie wavelength of the buckyballs
(i.e. treat them as if they were quantum objects), and estimate the distance
between the maxima of the resultant interference pattern on the screen. Given
that a buckyball has a diameter of approximately 1 nm, how does the size of
the buckyball compare with the distance between neighbouring maxima of the
interference pattern. Is the size of the C60 molecule likely to effect the visibility
of the interference fringes? At what velocity for the molecules would the inter-
ference fringes start to become difficult to detect? [This is an experiment that
has been done, though with a diffraction grating rather than just two slits.]

(b) The buckyballs can be set vibrating by the forces they experience as they pass
through the slits. Might it be possible for this to result in the interference
pattern disappearing?

SOLUTION

(a) Using the standard result from two-
slit interference theory, the phase
difference between the two waves
reaching the screen at position x is

δ =
2πd sin θ

λ
.

where λ is the wavelength of the
waves. The geometry of the situa-
tion is illustrated in the accompa-
nying figure.
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For the observation screen sufficiently far from the slits, the approximation can
be made that

sin θ ≈ tan θ =
x

D

where D is the distance from the screen with the slits to the observation screen.
Thus

δ =
2πdx
Dλ

.

Maxima will occur when δ = 2nπ where n is an integer. Thus the separation
∆x between the maxima will be

2π∆n =
2πd∆x
Dλ

i.e. with ∆n = 1 we get
∆x = Dλ/d.
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The mass of buckball will be m = 60× 12× 1.66× 10−27 = 1.1952× 10−23 kg,
so that the wavelength of the de Broglie waves will be

λ =
h

p
=

h

mv
= 5.5458× 10−12 m.

Thus the maxima will be separated by a distance ∆x given by

∆x =
Dλ

d
= 4.6215× 10−5 m.

Thus the separation between fringes will be much larger than the size of each
buckball, so the fringes will not be obscured by the size of the molecules.
In order for the fringe separation to be comparable to the molecular dimensions,
a fringe separation of 1 nm is required, which is 2.16 × 10−5 smaller than the
fringe separation for a velocity of 117 ms−1. As the fringe separation is inversely
proportional to the velocity, to produce fringes of 1 nm, it is therefore necessary
for the molecules to be moving at a velocity of 100/2.16 × 10−5 = 4.62 × 106

ms−1 which is an extremey high velocity that would require the use of a particle
accelerator.

(b) The interference pattern will wash out if there is information avaliable on which
slit the molecule passes through. If the molecules are set vibrationing in eaxctly
the same manner by the two slits, then the fact that they are vibrating would
not affect the interference pattern. However, if the molecules are set vibrating
in a different manner by each of the slits, then there will be ‘which path’
information available which would make it possible to determine which slit
the molecule passed through. In that case, the interference pattern would be
washed out.

2. In a two slit interference experiment, the following data is collected for the number of
detections of particles in the intervals (n∆x, (n+1)∆x) where n = −11,−10, . . . , 9, 10
and ∆x = 1 mm.

n -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1
detections 4 6 28 22 30 60 169 100 133 148 300

n 0 1 2 3 4 5 6 7 8 9 10
detections 307 147 130 105 161 59 36 21 25 6 3

(a) Construct a histogram that plots P (x) = ∆N/N∆x as a function of x.

(b) Estimate the positions where the probability is a maximum for a particle to
strike the screen.

(c) Given that the slit separation is 1 nm, and the observation screen is 1 m from the
slits, estimate the wavelength of the waves producing the interference pattern.

(d) If the particles are electrons, what is their velocity?

(e) If the width of each slit is 0.4 nm, draw a rough sketch of what the histogram
might look like if the slit through which each electron passed was observed. You
will have to take into account both the interference and diffraction patterns
patterns produced by the slits.

SOLUTION
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(a) The total number of detections is N = 2000, and with ∆x = 10−3 m, the
required values for P (x) = ∆N/N∆x are obtained from the given table simply
by dividing the number of detections in each interval by 2. Thus the data to
be plotted are as follows

n -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1
∆N/N∆x 2 3 14 11 15 30 84.5 50 66.5 74 150

n 0 1 2 3 4 5 6 7 8 9 10
∆N/N∆x 153.5 73.5 65 52.5 80.5 24.5 18 10.5 12.5 3 1.5

and the required histogram is:
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(b) The maxima of the histogram occur at x = 0 mm and at x = ±4.5 mm and
again, possibly, at x = ±8.5 mm.

(c) The phase difference between the waves from the two slits is given by

δ =
2πd sin θ

λ
.

With reference to the diagram
of the interference experiment
setup, it can be seen that if
the observation screen is well re-
moved from the screen with the
slits, then sin θ can be approxi-
mated by

sin θ ≈ tan θ =
x

D

so that

δ ≈ 2πdx
Dλ

.

 11" 
 2’-3" 

 6" 
d

D

θ
x

Maxima will occur when δ = 2nπ where n is an integer. The central maximum
occurs for n = 0, while the next nearest maxima occur when n = ±1. This
occurs, from the histogram, at x = ±4.5 mm. Given that d = 1 nm and D = 1
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m, then with δ = 2π so that x = 4.5 mm, then dx/D is 4.5× 10−12 m2 and we
have

λ ≈ 4.5× 10−12 m.

(d) From the de Broglie relation λ = h/p, and since p = mv, then

v = h/mλ = 1.6× 108 ms−1

which is about half the speed of light.

(e) When the slit through which the electrons pass is observed, there is no interfer-
ence pattern. Instead, the electrons will pass through each slit as if the other
were not there. If we are able to determine through which slit each electron
passes, but not through where in each slit, then the electrons will continue to
behave like waves when passing through each slit, thereby forming a single slit
diffraction pattern whose principal maximum will be directly opposite each slit.
From the theory of diffraction through a pair of slits, the intensity distribution
of interference pattern due to two slits of equal width is modulated by the
diffraction pattern produced by one slit. This diffraction pattern will have a
first minimum at w sin θ = ±λ where w is the width of the slit. Given that the
width of each slit is 0.4 nm, then we would expect the first minimum of the
diffraction pattern would occur at

x = D sin θ = Dλ/w = 4.5× 10−12/0.4× 10−9 = 0.11 m

i.e. at a distance of 11 mm fom the central maximum. This is indeed where the
diffraction pattern given by the histogram has a minimum.
Thus, if we observe through which slit each electron passes, what will be pro-
duced are separate diffraction patterns for each slit which will simply add to-
gether. As the slits are separated by a distance of 1 nm, the peaks of these two
diffraction patterns will also be separated by 1 nm, and hence on the scale of
resolution of the detection of electrons δx = 1 mm, these two peaks will not
be distinguishable. Thus the nett effect will be to fill in the minima of the
interference pattern, and diminish the height of the one observable centre peak.
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3. In the two slit experiment, it is found that at a pointQ directly opposite the midpoint
between the two slits, the probability of an electron striking Q if slit 2 is closed is
P1 = p.

(a) What is the probability P2 of an electron striking Q if slit 1 is closed? [Hint:
think symmetry.]

(b) What would be the probability of an electron striking Q if both slits were open,
but the slit through which each electron passed was observed? Explain your
reasoning.

(c) What is the probability amplitude of an electron striking the point Q if both
slits are open but the slit through which the electrons pass is not observed.
Hence show that in this case, the probability of an electron striking the point
Q is increased as compared to part (b), and determine by what factor this
probability is increased.

(d) At a second point Q′ close to Q, it is found that to a good approximation, the
values of P1 and P2 are the same as their values at Q. However, with both slits
open, no electrons are observed to strike Q′. How can this occur?

SOLUTION

(a) By symmetry, the probability P2 = p.

(b) If the slit through which the particle passes is observed, then the probability
of the particle arriving at point Q on the screen is just the sum of the two
probabilities P1 and P2, i.e. P1 + P2 = 2p.

(c) The probability of the particle arriving at point Q will be just the square of
the probability amplitude, i.e. P1 = p = |ψ1|2 and P2 = p = |ψ2|2. Once again,
by symmetry, it must be the case that ψ1 = ψ2 =

√
peiφ, where φ is some

phase factor (that we do not know, but do not need to know in this case). If
the slit through which the particle passes is not observed, then the probability
amplitude of the particle being observed at Q is just the sum of the probability
amplitudes associated with the particle passing through one or the other of the
two slits, i.e. ψ1 +ψ2 = 2

√
peiφ. The probability of the particle being observed

at Q is then P12 = |ψ1 + ψ2|2 = 4p, which is twice the probability found when
the slit through which the particle passes is observed.

(d) For the point Q′ close to Q, the symmetry between ψ1 and ψ2 is lost, so that
we must put ψ1 =

√
peiφ1 and ψ2 =

√
peiφ2 where φ1 6= φ2 in general. In this

case, the probability of a particle being observed at Q′ will be

|ψ1 + ψ2|2 = p|eiφ1 + eiφ2 |2 = 2p [1 + cos(φ2 − φ1)]

where the cos term represents interference between the contributing probability
amplitudes. If φ2 − φ1 = π, then this interference term is −1, resulting in a
zero probability of detecting a particle. Thus the zero detection probability at
Q′ is associated with this cancellation due to interference.
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4. In the discussion of the two slit experiment, the fact that the electrons have spin is
usually ignored. Suppose however that the experiment is performed in the following
fashion:

A beam of spin half particles (e.g. silver atoms) heading in the y direction passes
through a Stern-Gerlach apparatus and the separate beams corresponding to Sz =
±1

2 h̄ then pass through two separate slits.

Z

S z =
1
2!

S z = − 1
2!

Oven

beam of
silver atoms

observation
screen

Stern-Gerlach apparatus
Field in Z direction

The atoms then strike an observation screen. Now consider the following three
scenarios, and give an explanation in each case for your answers:

(a) Will an interference pattern be formed on the screen?

(b) Suppose a magnetic field is set up across one of the slits of just the right strength
to invert the spin of the atoms as they pass through the slit. Will an interference
pattern be observed in this case?

(c) Suppose, instead, that a further Stern-Gerlach apparatus with magnetic field
in the x direction is set up in the region after the two slits, but before the
observation screen, such that only atoms for which Sx = 1

2 h̄ direction reach the
screen. Will there be any interference pattern observed in this case?

[Note that the above experiments are more easily done (and have been done) with
photons, photon polarization, and polarizers rather than with atoms, spin, and mag-
netic fields.]

SOLUTION

The important issue in dealing with these questions is whether or not it is possible to
determine from the silver atoms that strike the observation screen what the path was that
they followed between entering the Stern-Gerlach apparatus and arriving at the screen.
If there is no information available to an observer on what the path might be, then it is
necessary to suppose that each silver atom ‘probes’ all the available pathways (in this case
two), so that the observed probability of arrival at a particular point on the observation
screen will then be the square of the sum of the probability amplitudes for the atoms to
follow each pathway, this leading to an interference effect being observed. On the other
hand, if there is any such information (even in principle) then there will be no interference
pattern.

1. In this case, an atom arriving at the observation screen will carry with it either spin
up or spin down, so when it arrives, we will be able to say for certain which slit the
atom passed through, so there will be no interference pattern.

6



2. If we have a magnetic field present at one of the slits, say the slit through which
the spin up atoms pass, which rotates this spin to spin down, then when an atom
arrives at the observation screen, it will always be observed to have spin down, so
we cannot determine through which slit the atom passed. Thus we will expect to
see an interference pattern. If, however, the fact that the spin is rotated as it passes
through the slit produces a ‘back-reaction’ on the equipment producing the magnetic
field – say a microscopic current pulse occurs through some inductive effect as the
spin is rotated, then we would have a record that an atom had passed through this
slit, so in this case we would not see an interference pattern. To resolve this issue is
a very challenging one.

3. Finally, this magnetic field affects the atoms in the same way irrespective of the slit
through which it passes, so even if there is a record that a spin has been flipped, (as
discussed in part 2 above) it does so in a situation where the atoms have already
passed through the slits so this record cannot provide information on which path.
And since, now, the spins of the atoms are the same irrespective of the slit that they
passed through, we cannot determine the path that the atoms followed, so the result
is an interference pattern will be observed.
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