
Chapter 2

The Early History of Quantum
Mechanics

In the early years of the twentieth century, Max Planck, Albert Einstein, Louis de Broglie,
Neils Bohr, Werner Heisenberg, Erwin Schrödinger, Max Born, Paul Dirac and others
created the theory now known as quantum mechanics. The theory was not developed in
a strictly logical way – rather a series of guesses inspired by profound physical insight
and a thorough command of new mathematical methods was sewn together to create a
theoretical edifice whose predictive power is such that quantum mechanics is considered
the most successful theoretical physics construct of the human mind. Roughly speaking
the history is as follows:

Planck’s Black Body Theory (1900) One of the major failings of classical physics
was its inability to correctly predict the spectrum of the electromagnetic radiation emitted
by an object in thermal equilibrium at some temperature T , (a black body). Classically
this spectrum S(f, T ) could be shown to be given by the formula (the Rayleigh-Jeans
formula):

S(f, T ) =
8πf2

c3
kT. (2.1)

This quantity S(f, T )df , otherwise known as the
spectral distribution function is the energy con-
tained in unit volume of electromagnetic radia-
tion in thermal equilibrium at an absolute tem-
perature T due to waves of frequency between f
and f + df . The constant k is known as Boltz-
mann’s constant. It clearly increases without
limit with increasing frequency – there is more
and more energy in the elctromagnetic field at
higher and higher frequencies. This amounts
to saying that an object at any temperature
would radiate an infinite amount of energy at
infinitely high frequencies. This result, known
as the ‘ultra-violet catastrophe’, is obviously in-
correct, and indicates a deep flaw in classical
physics.
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Figure 2.1: Rayleigh-Jeans (classical) and
Planck spectral distributions.

In an attempt to understand the form of the spectrum of the electromagnetic radiation
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emitted by a black body, Planck proposed that the atoms making up the object absorbed
and emitted light of frequency f in multiples of a fundamental unit of energy, or quantum
of energy, E = hf . On the basis of this assumption, he was able to show that the spectral
distribution function took the form

S(f, T ) =
8πhf3

c3

1
exp(hf/kT )− 1

. (2.2)

This curve did not diverge at high frequencies – there was no ultraviolet catastrophe.
Moreover, by fitting this formula to experimental results, he was able to determine the
value of the constant h, that is, h = 6.6218 × 10−34J-s. This constant, now known as
Planck’s constant, was soon recognized as a new fundamental constant of nature.

In later years, as quantum mechanics evolved, it was found that the ratio h/2π arose time
and again. As a consequence, Dirac introduced a new quantity ! = h/2π, pronounced
‘h-bar’, which is now the constant most commonly encountered. In terms of !, Planck’s
formula for the quantum of energy becomes

E = hf = (h/2π) 2πf = !ω (2.3)

where ω is the angular frequency of the light wave. It is ! that is now most commonly
used in quantum mechanics.

Einstein’s Light Quanta (1905) Although Planck believed that the rule for the ab-
sorption and emission of light in quanta applied only to black body radiation, and was a
property of the atoms, rather than the radiation, Einstein saw it as a property of elec-
tromagnetic radiation, whether it was black body radiation or of any other origin. In
particular, in his work on the photoelectric effect, he proposed that light of frequency
ω was made up of particles of energy !ω, now known as photons, which could be only
absorbed or emitted in their entirety. So light, a form of wave motion, had been given a
particle character. Much later, in 1922, the particle nature of light was quite explicitly
confirmed in the light scattering experiments of Compton.

Bohr’s Model of the Hydrogen Atom (1913) Bohr then made use of Einstein’s
ideas in an attempt to understand why hydrogen atoms do not self destruct, as they should
according to the laws of classical electromagnetic theory. As implied by the Rutherford
scattering experiments, a hydrogen atom consists of a positively charged nucleus (a proton)
around which circulates a very light (relative to the proton mass) negatively charged
particle, an electron. Classical electromagnetism says that as the electron is accelerating
in its circular path, it should be radiating away energy in the form of electromagnetic
waves, and do so on a time scale of ∼ 10−12 seconds, during which time the electron would
spiral into the proton and the hydrogen atom would cease to exist. This obviously does
not occur.

Bohr’s solution was to propose that provided the electron circulates in orbits whose radii
r satisfy an ad hoc rule, now known as a quantization condition, applied to the angular
momentum L of the electron

L = mvr = n! (2.4)

where v is the speed of the electron and m its mass, and n a positive integer (now referred
to as a quantum number), then these orbits would be stable – the hydrogen atom was said
to be in a stationary state. He could give no physical reason why this should be the case,



Chapter 2 The Early History of Quantum Mechanics 9

but on the basis of this proposal he was able to show that the hydrogen atom could only
have energies given by the formula

En = −ke2

2a0

1
n2

(2.5)

where k = 1/4πε0 and a0 = !2/mke2 = 0.0529 nm is known as the Bohr radius, and
roughly speaking gives an indication of the size of an atom as determined by the rules of
quntum mechanics. Later we shall see how an argument based on the uncertainty principle
gives a similar result.

The tie-in with Einstein’s work came with the further proposal that the hydrogen atom
emits or absorbs light quanta, or photons, by ‘jumping’ between the energy levels, such
that the frequency f of the photon emitted in a downward transition from the stationary
state with quantum number ni to another of lower energy with quantum number nf would
be

f =
Eni − Enf

h
=

ke2

2a0h

[ 1
n2

f

− 1
n2

i

]
. (2.6)

Einstein used these ideas of Bohr to rederive the black body spectrum result of Planck, and
set up the theory of photon emission and absorption, including spontaneous (i.e. ‘uncaused’
emission) – the first intimation that there were processes occurring at the atomic level that
were intrinsically probabilistic.

While there was some success in extracting from Bohr’s model of the hydrogen atom a
general method, now known as the ‘old’ quantum theory, his theory, while quite successful
for the hydrogen atom, was an utter failure when applied to even the next most complex
atom, the helium atom. The ad hoc character of the assumptions on which it was based
gave little clue to the nature of the underlying physics, nor was it a theory that could
describe a dynamical system, i.e. one that was evolving in time. Its role seems to have
been one of ‘breaking the ice’, freeing up the attitudes of researchers at that time to old
paradigms, and opening up new ways of looking at the physics of the atomic world.

De Broglie’s Hypothesis (1924) Inspired by Einstein’s picture of light, a form of
wave motion, as also behaving in some circumstances as if it was made up of particles,
and inspired also by the success of the Bohr model of the hydrogen atom, de Broglie was
lead, by purely aesthetic arguments to make a radical proposal. If light waves of frequency
ω can behave under some circumstances like a collection of particles of energy E = !ω,
then by symmetry, a massive particle of energy E, an electron say, should behave under
some circumstances like a wave of frequency ω = E/!. But a defining characteristic of a
wave is its wavelength. For a photon, the wavelength of the associated wave is λ = c/f
where f = ω/2π. So what is it for a massive particle? From Einstein’s theory of relativity,
which showed that the energy of a photon (moving freely in empty space) is related to its
momentum p by E = pc, it follows that

E = !ω = ! 2πc/λ = pc (2.7)

so that, since ! = h/2π
p = h/λ. (2.8)

This equation then gave the wavelength of the photon in terms of its momentum, but it
is also an expression that contains nothing that is specific to a photon. So de Broglie
assumed that this relationship applied to all free particles, whether they were photons or
electrons or anything else, and so arrived at the pair of equations

f = E/h λ = h/p (2.9)
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which gave the frequency and wavelength of the waves that were to be associated with a
free particle of kinetic energy E and momentum p 1.

This work constituted de Broglie’s PhD thesis – a pretty thin affair, a few pages long, and
Einstein was one of the examiners of the thesis. But the power and elegance of his ideas
and his results were immediately appreciated by Einstein, more reluctantly by others, and
lead ultimately to the discovery of the wave equation by Schrödinger, and the development
of wave mechanics as a theory describing the atomic world.

Experimentally, the first evidence of the wave nature of massive particles was seen by
Davisson and Germer in 1926 when a beam of electrons of known energy was fired through
a nickel crystal in which the nickel atoms are arranged in a regular array. The result
was a diffraction pattern whose characteristics were entirely consistent with the electrons
behaving as waves, with a wavelength given by the de Broglie formula, being diffracted by
the periodic array of atoms in the crystal (which acted much like a slit diffraction grating).

An immediate success of de Broglie’s hypothesis
was that it gave an explanation, of sorts, of the
quantization condition L = n!. If the electron
circulating around the nucleus is associated with
a wave of wavelength λ, then for the wave not to
destructively interfere with itself, there must be
a whole number of waves (see Fig. (2.2)) fitting
into one circumference of the orbit, i.e.

nλ = 2πr. (2.10)

Using the de Broglie relation λ = h/p then gives
L = pr = n! which is just Bohr’s quantization
condition.

r

λ

Figure 2.2: De Broglie wave for which four
wavelengths λ fit into a circle of radius r.

But now, given that particles can exhibit wave like properties, the natural question that
arises is: what is doing the ‘waving’? Further, as wave motion is usually describable
in terms of some kind of wave equation, it is then also natural to ask what the wave
equation is for these de Broglie waves. The latter question turned out to be much easier
to answer than the first – these waves satisfy the famous Schrödinger wave equation. But
what these waves are is still, largely speaking, an incompletely answered question: are they
‘real’ waves, as Schrödinger believed, in the sense that they represent some kind of physical
vibration in the same way as water or sound or light waves, or are they something more
abstract, waves carrying information, as Einstein seemed to be the first to intimate. The
latter is an interpretation that has been gaining in favour in recent times, a perspective that
we can support somewhat by looking at what we can learn about a particle by studying
the properties of these waves. It is this topic to which we now turn.

1For a particle moving in the presence of a spatially varying potential, momentum is not constant so
the wavelength of the waves will also be spatially dependent – much like the way the wavelength of light
waves varies as the wave moves through a medium with a spatially dependent refractive index. In that
case, the de Broglie recipe is insufficient, and a more general approach is needed – Schrödinger’s equation.
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The Wave Function

On the basis of the assumption that the de Broglie relations give the frequency and wave-
length of some kind of wave to be associated with a particle, plus the assumption that
it makes sense to add together waves of different frequencies, it is possible to learn a
considerable amount about these waves without actually knowing beforehand what they
represent. But studying different examples does provide some insight into what the ul-
timate interpretation is, the so-called Born interpretation, which is that these waves are
‘probability waves’ in the sense that the amplitude squared of the waves gives the prob-
ability of observing (or detecting, or finding – a number of different terms are used) the
particle in some region in space. Hand-in-hand with this interpretation is the Heisenberg
uncertainty principle which, historically, preceded the formulation of the probability in-
terpretation. From this principle, it is possible to obtain a number of fundamental results
even before the full machinery of wave mechanics is in place.

In this Chapter, some of the consequences of de Broglie’s hypothesis of associating waves
with particles are explored, leading to the concept of the wave function, and its probability
interpretation.

3.1 The Harmonic Wave Function

On the basis of de Broglie’s hypothesis, there is associated with a particle of energy E and
momentum p, a wave of frequency f and wavelength λ given by the de Broglie relations
Eq. (2.9). It more usual to work in terms of the angular frequency ω = 2πf and wave
number k = 2π/λ so that the de Broglie relations become

ω = E/! k = p/!. (3.1)

With this in mind, and making use of what we already know about what the mathematical
form is for a wave, we are in a position to make a reasonable guess at a mathematical
expression for the wave associated with the particle. The possibilities include (in one
dimension)

Ψ(x, t) = A sin(kx− ωt), A cos(kx− ωt), Aei(kx−ωt), . . . (3.2)

At this stage, we have no idea what the quantity Ψ(x, t) represents physically. It is given
the name the wave function, and in this particular case we will use the term harmonic
wave function to describe any trigonometric wave function of the kind listed above. As
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we will see later, in general it can take much more complicated forms than a simple single
frequency wave, and is almost always a complex valued function.

In order to understand what information may be contained in the wave function, which
will lead us toward gaining a physical understanding of what it might represent, we will
turn things around briefly and look at what we can learn about the properties of a particle
if we know what its wave function is.

First, given that the wave has frequency ω and wave number k, then it is straightforward
to calculate the phase velocity vp of the wave:

vp =
ω

k
=

!ω

!k
=

E

p
=

1
2mv2

mv
= 1

2v. (3.3)

Thus, given the frequency and wave number of a wave function, we can determine the
speed of the particle from the phase velocity of its wave function, v = 2vp. We could
also try to learn from the wave function the position of the particle. However, the wave
function above tells us nothing about where the particle is to be found in space. We
can make this statement because this wave function is the same everywhere i.e. there is
nothing whatsoever to distinguish Ψ at one point in space from any other, see Fig. (3.1).

Ψ(x, t)

x

Figure 3.1: A wave function of constant amplitude and wavelength. The wave is the same
everywhere and so there is no distinguishing feature that could indicate one possible position of
the particle from any other.

Thus, this particular wave function gives no information on the whereabouts of the particle
with which it is associated. So from a harmonic wave function it is possible to learn how
fast a particle is moving, but not what the position is of the particle.

3.2 Wave Packets

From what was said above, a wave function constant throughout all space cannot give
information on the position of the particle which suggests that a wave function that did
not have the same amplitude throughout all space might be a candidate for a giving such
information. In fact, since what we mean by a particle is a physical object that is confined
to a highly localized region in space, ideally a point, it would be intuitively appealing to
be able to devise a wave function that is zero or nearly so everywhere in space except for
one localized region. It is in fact possible to construct, from the harmonic wave functions,
a wave function which has this property. To show how this is done, we first consider what
happens if we combine together two harmonic waves of very close frequency. The result
is well-known: a ‘beat note’ is produced, i.e. periodically in space the waves add together
in phase to produce a local maximum, while midway in between the waves will be totally
out of phase and hence will destructively interfere. Each localized maximum is known
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as a wave packet, so what is produced is a series of wave packets. Now suppose we add
together a large number of harmonic waves with wave numbers k1, k2, k3, . . . all lying in
the range:

k −∆k < kn < k + ∆k (3.4)

around a mean value k, i.e.

Ψ(x, t) =A(k1) cos(k1x− ω1t) + A(k2) cos(k2x− ω2t) + . . .

=
∑

n

A(kn) cos(knx− ωnt) (3.5)

where A(k) is a function peaked about the mean value k with a full width at half maximum
of 2∆k. (There is no significance to be attached to the use of cos functions here – the idea
is simply to illustrate a point. We could equally well have used a sin function or indeed
a complex exponential.) What is found is that in the limit in which the sum becomes an
integral:

Ψ(x, t) =
∫ +∞

−∞
A(k) cos(kx− ωt) dk (3.6)

all the waves interfere constructively to produce only a single beat note (in effect, the
‘beat notes’ or wave packets are infinitely far apart). In other words, the wave function
so constructed is found to have essentially zero amplitude everywhere except for a single
localized region in space, over a region of width 2∆x, i.e. the wave function Ψ(x, t) in this
case takes the form of a single wave packet, see Fig. (3.2).

 1'-1" 
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xkk

Ψ(x, t)
A(k)

Figure 3.2: (a) The distribution of wave numbers k of harmonic waves contributing to the wave
function Ψ(x, t). This distribution is peaked about k with a width of 2∆k. (b) The wave packet
Ψ(x, t) of width 2∆x resulting from the addition of the waves with distribution A(k). The oscilla-
tory part of the wave packet (the ‘carrier wave’) has wave number k.

This wave packet is clearly particle-like in that its region of significant magnitude is con-
fined to a localized region in space. Moreover, this wave packet is constructed out of a
group of waves with an average wave number k, and so these waves could be associated in
some sense with a particle of momentum p = !k. If this were true, then the wave packet
would be expected to move with a velocity of p/m. This is in fact found to be the case,
as the following calculation shows.

Because a wave packet is made up of individual waves which themselves are moving,
though not with the same speed, the wave packet itself will move (and spread as well).
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The speed with which the wave packet moves is given by its group velocity vg:

vg =
(dω

dk

)
k=k

. (3.7)

This is the speed of the maximum of the wave packet i.e. it is the speed of the point
on the wave packet where all the waves are in phase. Calculating the group velocity
requires determining the relationship between ω to k, known as a dispersion relation.
This dispersion relation is obtained from

E = 1
2mv2 =

p2

2m
. (3.8)

Substituting in the de Broglie relations Eq. (2.9) gives

!ω =
!2k2

2m
(3.9)

from which follows the dispersion relation

ω =
!k2

2m
. (3.10)

The group velocity of the wave packet is then

vg =
(dω

dk

)
k=k

=
!k

m
. (3.11)

Substituting p = !k, this becomes vg = p/m. i.e. the packet is indeed moving with the
velocity of a particle of momentum p, as suspected.

This is a result of some significance, i.e. we have constructed a wave function of the form
of a wave packet which is particle-like in nature. But unfortunately this is done at a cost.
We had to combine together harmonic wave functions cos(kx−ωt) with a range of k values
2∆k to produce a wave packet which has a spread in space of size 2∆x. The two ranges
of k and x are not unrelated – their connection is embodied in an important result known
as the Heisenberg Uncertainty Principle.

3.3 The Heisenberg Uncertainty Principle

The wave packet constructed in the previous section obviously has properties that are
reminiscent of a particle, but it is not entirely particle-like – the wave function is non-zero
over a region in space of size 2∆x. In the absence of any better way of relating the wave
function to the position of the atom, it is intuitively appealing to suppose that where
Ψ(x, t) has its greatest amplitude is where the particle is most likely to be found, i.e the
particle is to be found somewhere in a region of size 2∆x. More than that, however, we
have seen that to construct this wavepacket, harmonic waves having k values in the range
(k − ∆k, k + ∆x) were adding together. These ranges ∆x and ∆k are related by the
bandwidth theorem, which applies when adding together harmonic waves, which tell us
that

∆x∆k >∼ 1. (3.12)

Using p = !k, we have ∆p = !∆k so that

∆x∆p >∼ !. (3.13)
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[A more rigorous derivation, based on a more precise definition of ∆x and ∆k leads to

∆x∆p ≥ 1
2! (3.14)

though we will mostly use the result Eq. (3.13).]

A closer look at this result is warranted. A wave packet that has a significant amplitude
within a range 2∆x was constructed from harmonic wave functions which represent a
range of momenta p − ∆p to p + ∆p. We can say then say that the particle is likely
to be found somewhere in the region 2∆x, and given that wave functions representing a
range of possible momenta were used to form this wave packet, we could also say that the
momentum of the particle will have a value in the range p−∆p to p+∆p. The quantities ∆x
and ∆p are known as uncertainties for reasons that will become increasingly apparent,
and the relation above Eq. (3.14) is known as the Heisenberg uncertainty relation for
position and momentum. It tells us that we cannot determine, from knowledge of the
wave function alone, the exact position and momentum of a particle at the same time.
In the extreme case that ∆x = 0, then the position uncertainty is zero, but Eq. (3.14)
tells us that the uncertainty on the momentum is infinite, i.e. the momentum is entirely
unknown. A similar statement applies if ∆p = 0.

This conclusion flies in the face of our experience in the macroscopic world, namely that
there is no problem, in principle, with knowing the position and momentum of a particle.
Thus, we could then argue that our wave function idea is all very interesting, but that
it is incomplete, that there is information missing. It is tempting to think that perhaps
there is a prescription still to be found that will enable us to find the position and the
momentum of the particle from the wave function, which amounts to saying that the wave
function by itself does not give complete information on the state of the particle. Einstein
fought vigorously for this position in a famous series of exchanges with Neils Bohr and
others, i.e. that the wave function was not a complete description of ‘reality’, and that
there was somewhere, in some sense, a repository of missing information that will remove
the incompleteness of the wave function – so-called ‘hidden variables’. Unfortunately
(for those who hold to his point of view) evidence has mounted, particularly in the past
few decades, that the wave function (or its analogues in the more general formulation of
quantum mechanics) does indeed represent the full picture – the most that can ever be
known about a particle (or more generally any system) is what can be learned from its wave
function. This means that the difficulty encountered above concerning not being able, in
general, to pinpoint either the position or the momentum of a particle from knowledge
of its wave function is not a reflection of any inadequacy on the part of experimentalists
trying to measure these quantities, but is an irreducible property of the natural world. It
is only at the macroscopic level where the uncertainties mentioned above become so small
as to be experimentally unmeasurable that the effects of the uncertainty principle have no
apparent effect.

The limitations implied by the uncertainty relation as compared to classical physics may
give the impression that something has been lost, that the uncertainty principle is some
sort of roadblock to obtaining complete information about a system. It is true that it seems
that there is information about the physical world that is hidden from us, 1 at least on the
basis of our classical physics expectations, which may then be seen as a cause for concern
because of its implications that we cannot, even in principle, make exact predictions about
the behaviour of any physical system. However, the view can be taken that the opposite
is true, that the uncertainty principle is an indicator of greater freedom. In a sense, the
uncertainty principle now makes it possible for a physical system to have a much broader

1Or more alarming, the information may not even be there in the first place!



Chapter 3 The Wave Function 16

range of possible physical properties consistent with the smaller amount of information
that is available about its properties. This leads to a greater richness in the properties of
the physical world than could ever be found within classical physics.

3.3.1 The Size of an Atom

One important application of the uncertainty relation is to do with determining the size
of atoms. Recall that classically atoms should not exist: the electrons must spiral into
the nucleus, radiating away their excess energy as they do. However, if this were the
case, then the situation would be arrived at in which the position and the momentum of
the electrons would be known: stationary, and at the position of the nucleus. This is in
conflict with the uncertainty principle, so it must be the case that the electron can spiral
inward no further than an amount that is consistent with the uncertainty principle.

To see what the uncertainty principle does tell us about the behaviour of the electrons in
an atom, consider as the simplest example a hydrogen atom. Here the electron is trapped
in the Coulomb potential well due to the positive nucleus. We can then argue that if the
electron cannot have a precisely defined position, then we can at least suppose that it is
confined to a spherical (by symmetry) shell of radius a. Thus, the uncertainty ∆x in x
will be a, and similarly for the y and z positions. But, with the electron moving within
this region, the x component of momentum, px, will, also by symmetry, swing between
two equal and opposite values, p and −p say, and hence px will have an uncertainty of
∆px ≈ 2p. By appealing to symmetry once again, the y and z components of momentum
can be seen to have the same uncertainty.

By the uncertainty principle ∆px∆x ≈ !, (and similarly for the other two components),
the uncertainty in the x component of momentum will then be ∆px ≈ !/a, and hence
p ≈ !/a. The kinetic energy of the particle will then be

T =
p2

2m
≈ !2

2ma2
(3.15)

so including the Coulomb potential energy, the total energy of the particle will be

E ≈ !2

2ma2
− e2

4πε0a
. (3.16)

The lowest possible energy of the atom is then obtained by simple differential calculus.
Thus, taking the derivative of E with respect to a and equating this to zero and solving
for a gives

a ≈ 4πε0!2

me2
≈ 0.5 nm (3.17)

and the minimum energy

Emin ≈− 1
2

me4

(4πε0)2!2
(3.18)

≈− 13.6 eV. (3.19)

The above values for atomic size and atomic energies are what are observed in practice.
The uncertainty relation has yielded considerable information on atomic structure without
knowing all that much about what a wave function is supposed to represent!

The exactness of the above result is somewhat fortuitous, but the principle is nevertheless
correct: the uncertainty principle demands that there be a minimum size to an atom. If
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a hydrogen atom has an energy above this minimum, it is free to radiate away energy by
emission of electromagnetic energy (light) until it reaches this minimum. Beyond that, it
cannot radiate any more energy. Classical EM theory says that it should, but it does not.
The conclusion is that there must also be something amiss with classical EM theory, which
in fact turns out to be the case: the EM field too must treated quantum mechanically.
When this is done, there is consistency between the demands of quantum EM theory and
the quantum structure of atoms – an atom in its lowest energy level (the ground state)
cannot, in fact, radiate – the ground state of an atom is stable.

Another important situation for which the uncertainty principle gives a surprising amount
of information is that of the harmonic oscillator.

3.3.2 The Minimum Energy of a Simple Harmonic Oscillator

By using Heisenberg’s uncertainty principle in the form ∆x∆p ≈ !, it is also possible to
estimate the lowest possible energy level (ground state) of a simple harmonic oscillator.
The simple harmonic oscillator potential is given by

U =
1
2
mω2x2 (3.20)

where m is the mass of the oscillator and ω is its natural frequency of oscillation. This is
a particularly important example as the simple harmonic oscillator potential is found to
arise in a wide variety of circumstaces such as an electron trapped in a well between two
nuclei, or the oscillations of a linear molecule, or indeed in a manner far removed from the
image of an oscillator as a mechanical object, the lowest energy of a single mode quantum
mechanical electromagnetic field.

We start by assuming that in the lowest energy level, the oscillations of the particle have
an amplitude of a, so that the oscillations swing between −a and a. We further assume
that the momentum of the particle can vary between p and −p. Consequently, we can
assign an uncertainty ∆x = a in the position of the particle, and an uncertainty ∆p = p in
the momentum of the particle. These two uncertainties will be related by the uncertainty
relation

∆x∆p ≈ ! (3.21)

from which we conclude that
p ≈ !/a. (3.22)

The total energy of the oscillator is

E =
p2

2m
+ 1

2mω2x2 (3.23)

so that roughly, if a is the amplitude of the oscillation, and p ≈ !/a is the maximum
momentum of the particle then

E ≈ 1
2

(
1

2m

!2

a2
+ 1

2mω2a2

)
(3.24)

where the extra factor of 1
2 is included to take account of the fact that the kinetic and

potential energy terms are each their maximum possible values.

The minimum value of E can be found using differential calculus i.e.

dE

da
= 1

2

(
− 1

m

!2

a3
+ mω2a

)
= 0. (3.25)
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Solving for a gives

a2 =
!

mω
. (3.26)

Substituting this into the expression for E then gives for the minimum energy

Emin ≈ 1
2!ω. (3.27)

A more precise quantum mechanical calculation shows that this result is (fortuitously)
exactly correct, i.e. the ground state of the harmonic oscillator has a non-zero energy of
1
2!ω.

It was Heisenberg’s discovery of the uncertainty relation, and various other real and imag-
ined experiments that ultimately lead to a fundamental proposal (by Max Born) concern-
ing the physical meaning of the wave function. We shall arrive at this interpretation by
way of the famous two slit interference experiment.


