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Simple Harmonic Motion

@ Oscillatory motion (the simple harmonic oscillator) is
found throughout the physical world:

@ Mass on a spring.
o Waves on a string.

o Electromagnetic waves are dynamically the same as
the simple harmonic oscillator.

@ Important in formulating the quantum version of
electromagnetism: photons

@ Elementary particles known as bosons are harmonic
oscillators in disguise!!

@ These are all essentially examples of mechanical oscillations

@ But oscillatory properties of all waves — sound waves, water waves, light waves,
probability (amplitude) waves of quantum mechanics — has other important
consequences:

e Interference and
o Diffraction
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The significance of interference and diffraction

@ Interference and diffraction are uniquely
characteristic of wave motion:

o Young’s interference experiment showed that light
was a form of wave motion

o Whereas Newton thought that light was made up of
‘corpuscles’.

@ Ironically, modern quantum mechanics says that light
is made up of ‘corpuscles’, called photons!

@ Overlapping waves from two sources combine to produce an interference pattern.
e The separation of the sources d is half the wavelength A of the waves.
o Note the regions where the waves cancel (the diagonal lines) — destructive interference.

o Less easy to see: waves enhance midway between the cancellation regions — constructive
interference.
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Constructive and destructive interference.

Waves from the two sources S; and S, arrive at P

S, ‘in-step’ and hence reinforce.
% P o Waves are said to be ‘in phase’ and we get
So constructive interference.

@ Waves from the two sources S; and S, arrive at P
‘out-of-step’ and hence cancel.

Sl&h@

o Waves are said to be ‘out of phase’ and we
destructive interference.
Sy

@ In between talk about ‘partial interference’.
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Definition of Interference and Diffraction

§\ Very quiet number of sources are simultaneously present

\ \ (superimposed) in the same region of space.

SN

Two loud .)')' d volume @ Here sound waves from two speakers emitting a

speakers / single tone (e.g. middle C 278Hz, A = 1.2m) overlap
= / creating regions of loudness (constructive

=
=

QN

@ Interference occurs when waves from a finite

/ Very quiet interference) and quiet (destructive interference).

e 4/ @ Diffraction is the limiting case of interference when
] waves from an — essentially — infinite number of
sources are superimposed.

o Diffraction is usually thought of in terms of the
spreading of waves as they pass through a narrow
opening or bend around an obstacle.

o Here ocean waves are diffracting around a headland.
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Vector and Scalar theory of interference and diffraction

@ Waves will often have an amplitude of oscillation, but also have a direction of
oscillation.

@ Waves on a string — just waggle the string in a circular motion.

@ In electromagnetic waves, the electric and magnetic fields are vectors: they have both a
magnitude and a direction.

@ Have to use vector addition when combining different waves together: a much more difficult
calculation

@ We shall assume that the waves are scalars — no need for vector addition, just positive and
negative numbers (and later, complex numbers).

e It turns out that the vector and the scalar theories give the same result in many cases!!
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Interference

observation

sereen @ Interference can arise in a number of ways:

> ))>> o Two or more separate sources (e.g. two lasers, two or
incoming erference more radio aerials, two or more loudspeakers)

waves tern

radiating waves that will interfere when they are
— )>>>> superimposed.

@ Interference arising from the division of a wavefront.
e.g. in two slit (Young’s) interference experiment.

intensity of
light fringes

I I I I I I I I o Lower figure on left is of the observed interference

pattern.

@ Also get interference from a wave being partially reflected and partially transmitted
through e.g. a sheet of glass.
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Interference from two sources

A mathematical description

@ Shall study two source interference case in order to introduce

@ constructive interference & destructive interference

e the importance of phase difference

N P @ What is required is the total disturbance at P due to
1

S waves from the two sources S| and S,.
1

o The ‘disturbance’ can be any kind of linear wave —
d X7 water wave, sound wave, light wave, gravitational
wave, probability amplitude wave . .. but not a shock
wave: they are non-linear.

o Linear waves can be simply added together or
S» ‘superimposed’.

@ Shall assume the waves generated by each source
will have the same frequency (and wavelength)
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Interference from two sources

Description of a single source.

@ For an outwardly spherically expanding wave y = asin(wt — kx + ¢)
e yis called the amplitude of the disturbance — note new meaning for ‘amplitude’.
@ ais also called the amplitude so beware of the context.

e w (angular frequency) = 2xf k (wave number) = 27/

At the source (x = 0) y o« sin(wt + ¢). ¢ is the phase of the source oscillations.
o Why the proportionality sign?

@ the amplitude « falls off as 1/x.

@ So, at the source, a = co!l!

o But no source is a true point, so a will be assumed
finite always.

@ In fact, we will assume a is a constant.
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Interference from two sources
A mathematical description continued

S
! o Amplitude of wave at P due to wave from S| is
d X5 Yi(P) = a; sin(wt — kx| + ¢1)
@ Similarly, the amplitude of the wave at P due to
waves originating from S, is
AP

2(P) = a; sin(wt — kx; + ¢,)

@ At the sources x; = 0 and x, = 0 the amplitudes are

yp o sin(wt + ¢1) and  y, o sin(wt + ¢,).

o The phase difference ¢ — ¢» tell us by how much the waves at the sources are out-of-step.
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Interference from two sources
Mathematical description continued

X1 . . . .
S @ The total amplitude y(P) at P is obtained by simple
addition: y(P) = y;(P) + y,(P)
d X2 o This is what we mean by ‘superposition’ of two waves.

Y(P) = ay sin(wt — kx| + ¢1) + ap sin(wt — kxy + ¢3).
S»
@ What is almost always measured for any wave is not its amplitude but its intensity

o Intensity is defined differently for different kinds of waves, but in every case, it is proportional
to the square of the amplitude:

‘Instantaneous Intensity’ 1 = y*

@ This is known as the instantaneous intensity as it gives the intensity at each instant in
time.
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Interference from two sources

Instantaneous intensity

@ Instantaneous intensity for combined waves at P is (leave out P for the present)

1=y =(y +y)
=31+ 35 + 21
=l + L +2y1y,

Here I, and I, are the instantaneous intensities at P due to waves originating from
sources S; and S, respectively.
@ Written out in full:
I(P) = @ sin®(wt—kx, + ) +a3 sin®(wt—kxy + o) +2a,ay sin(wt —kx; + ;) sin(wt—kxy + o)
@ Now we use trigonometry to work out the last term:
sinAsinB = 1 (cos(A — B) — cos(A + B)).
to give

I(P) =a? sin*(wt — kx) + ¢) + a3 sin®(wt — kx, + ¢;)
+ayaz {cos[k(xy — x1) + @1 — ¢a] — cos[k(x1 + x2) — 2wt — ¢1 — 1]}
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Interference from two sources

Time averaged intensity

@ The expression for I(P) just obtained
I(P) =a’ sin*(wt — kx| + ¢;) + a3 sin*(wt — kx, + ¢)
+ araxf coslk(x, = x1) + ¢1 — §a] — cos[k(x; + x2) = 2wt — §1 — o]

contains terms that are oscillating in time with a frequency 2w.

@ In general however, these oscillations occur so quickly that it is impossible to follow
them

e e.g. for light at optical frequencies f ~ 10'5 Hz.
@ Even the oscillations of audible sound waves for which f ~ 200 — 400 Hz or higher.

o But for slowly oscillating quantities, like the tide, the amplitude can be monitored directly.

@ We shall assume we are working with high frequency signals. In such cases, all we
can reasonably measure is the intensity averaged over many periods of oscillation.
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Interference from two sources
Time averaged intensity continued

@ Putting it all together
I(P) =a’ sin*(wt — kx| + ¢;) + a3 sin*(wt — kx, + ¢)

+ aras{ coslk(x, = x1) + ¢1 — §a] — cosTk(x1 + x2) = 2wt — ¢1 — o]
becomes

I(P) =1a} + 1d3 + aja; cos[k(x, — x1) + ¢y — ]

:71 +72 +2 7172 cos o
where 6 = k(x, —x1) + ¢1 — ¢2.

@ We shall make two further assumptions:
o The sources are of equal strength, a; =ay =asol; =1, = Iy

@ The sources are in phase ¢; = ¢,.

o Tutorial exercises will look at what happens if these conditions are not satisfied.
Semester 1 2009 PHYS201
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Interference from two equal strength sources

Constructive interference

@ For equal strength, in phase sources, we get

I(P) = 2y + 21y cos § = 2Io(1 + cos &) = 41, cos” 16.
2r
where 0= k(xz —Xx1) = 7()62 —X1).

@ Constructive interference occurs when the intensity at P reaches a maximum.

o This will occur when cos? 16 = 1:
I(Py=4ly for cos®1o=1.

Which gives
%5 = %(xz —x1)=nm n aninteger

l

Xy — X1 =nd

e The path difference x, — x; must be an integer number of wavelengths.

o The waves leave S| and S, in step as ¢; = ¢ and arrive at P in step.
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Interference from two equal strength sources
Destructive interference

@ Destructive interference occurs when I(P) = 41, cos? %6 is @ minimum, i.e. zero

o Requires cos 16 = 0 which gives

1= %(xz -x1)=(m+Hr n aninteger

i

xp—x; =+ %)/l.

@ The path difference x, — x; must be a half integer number of wavelengths.

e The waves leave S| and S in step, but arrive at P exactly out of step.

o One wave has to travel 15 or 21 or 31... wavelengths further on the way to the point P.

wave from S
< -
<:v;wn from S
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Interference from two equal strength sources

Interference maxima in space

@ Can derive a formula for the position in space of the interference maxima:

4y? 4x?

Z_/P_mzl n=0,1,2,3,..., suchthat nd<d
n —n

@ d = 31in figure below.

To —
intensity
To —
T2 — &7
= A
T xr1 = -2\

@ Will be asked to analyse this result in an assignment question.
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Polar Plots

@ A very useful way to represent the directional properties of the interference pattern due
to two or more sources is to plot the intensity as a function of direction.

@ The idea is to work out what the intensity of the combined waves are at a long distance
from the sources (the Fraunhofer condition):

x / ) )
S 5 ! o Since I(P) = 4Tg cos® L5 with § = 2 (x, - x1)
to . then
far distant 0t —x1)
point P 1(P) =4I cos® (%)
=41, cos? (M)
/ A
X2 o A natural way to plot this is as a function of angle
o) as a polar plot.
S

Xy —Xx] ~dsinf
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Polar Plots continued

@ Toillustrate, shall suppose that d = A. Then
1(6) = 41, cos? (r sin H)

@ Plot this by calculating 1(0) for each value of 6, but then draw a line from the origin out
a distance o I1(6) at an angle 6 to the ‘horizontal’ direction.

0= 73{ o Itis usually sufficient to determine the angles at which the intensity is
a maximum or a minimum, mark those points, and sketch in the curve
0= %’T joining those points.
@ Maxima (T = 4I) occur when zsin = nm, n = 0,+1,+2,....
g=_3% ie. sinf=n n=0,+1,+2...
~ 7%

@ Note that —1 < sinf < 1, which cuts off the allowed values of nton = 0, 1.

@ So maxima occur at

sinf=0=0=0,7 and sinB:il:O:ig.

@ Minima (I = 0) occur when zsinf = (n+ $)m, n=0,+1,+2,...

ie.  sinf=@n+3) n=0=x1%2,...
@ So minima occur at sinf=+3 =0=x2 +37
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Young’s interference experiment

@ This was the first experiment (1803) to show that light was a form of wave motion, and
not made up of ‘bullet-like’ corpuscles as proposed by Newton.

incomi
waves

—

Sy

Semester 1 2009

@ Waves are incident from a very far distant

P source.
T o The 'wave fronts’ reach the slits S| and S,
z simultaneously, so waves are in phase

when they reach the slits.

o The waves spread out after passing
through the slits (diffraction), so the slits
act as in phase sources of waves.

o Shall assume the Fraunhofer condition

{>d
observation so the approximation can be made:
screen X2 —x1 = dsinf
PHYS201 Wave Mechanics 21/86



Young’s interference experiment continued

@ The set-up is equivalent to the two source problem studied earlier, so
I(P)=4lycos’ s 6= 2/1—”(x2 —x1)
where I, is the intensity at P due to the waves from one slit only.
@ Using approximate result x, — x; = dsin6:

- - d
1(P) = 4T, cos’ (”7 sin 0) .

@ We are after the interference pattern on the observation screen, so we want I(P) as a
function of z.

’ @ For 6 < 25° sin@ztanezf)

, - d
0 ‘ o I(P) ~ 4l cos (’T7 %)
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Young’s interference experiment
Interference fringes

Order of fringegs — n=-2n=-1 n=0 n=1 n=2

AAA z
i)\[ A )\[ A i)\/
4
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d
Interference
fringes
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Young’s interference experiment

Interference fringes continued

@ Each bright interference maximum is known as an interference fringe
@ The maximum positioned at z, = n(%) is known as the n' order fringe.
@ Adjacent fringes are equally separated:
A
Zn4l —n = —
+1 — % d
(except for angles greater than about 25° when the fringes become further apart.)
@ Two limiting cases:

e For increasing d, the fringes become closer together.

d
o For decreasing d, eventually find my sinf << 1.
Butcosx ~ 1ifx < 1so
_ _ d _
1(P) = 4T, cos? (”7 sin 9) ~ 4l,.
e Thus there are no fringes on the observation screen.

o Get the result expected if the two sources (slits) coincided.
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Some useful properties of complex numbers

@ In the following analysis we will need to make use of complex numbers as an aid in
adding together large numbers of sin functions.

@ Recall that we have had to calculate sums like

y = ay sin(wt — kx1 + ¢1) + az sin(wt — kxy + ¢2).
@ Such sums become prohibitively difficult to do if we have 5, 10, 50, . .. separate sources.

e Can use complex number methods to greatly simplify such calculations.

@ Recall Euler’s theorem: ™ = cosx +isinx i=+vV-1.

e So that cosx =Re¢”™  Re = real part
sinx =Ime®  Im = imaginary part.
e and complex conjugate: e ™ = cosx — isinx.
eix + e—ix eix _ e—ix
e and cosx= —— sinx = ——
2 2i
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A useful geometric sum

@ Will use complex number methods to calculate the sum of N terms:
S =sinb + sin(b — 6) + sin(b — 28) + ... + sin(b — (N — 1)d)

e arises in study of N-slit interference and diffraction through a slit.

@ Impossible to do as is, but can turn it into a simple problem by using complex algebra:
sin(b — nd) = Im ">
so that
S =Im [eib + o0 4 =20 ei(hf(N,l)(;)]

=Im {e |1+ + e 4.+ e

@ Now put r = ¢7. We end up with a geometric series with common ratio r:
S =Im {eib[l +r+ r2+...+rN’1]}

oim 12
1-r
1= e—iNzS
=Im § e’ ———
mfeloe)
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A useful geometric sum (continued)

@ The expression just obtained is expressed in terms of complex quantities. We need a
result in terms of real quantities. So, a trick:

_ -iNs ~iN6/2  iN§/2 _ ,~iN6/2
S=Im {eibi}zlm {eib-e ¢ ¢ }

e —i5/2 /2 _ 02
1-¢ e e e

ix —ix

which sets us up to use sinx = to give

S=1Im {eibe—i(zv—l)a/z sin(N6/2)} _sin(Né6/2) Im {ei(b—(N—l)ﬁ/Z)}

sin(6/2) |~ sin(6/2)
_sin(N6/2) . v
_—sin(5/2) sin[b— (N -1)§/2].
@ So finally
sinb + sin(b — 6) + sin(b — 26) + ... + sin(b — (N — 1)6) = % sin[b— (N - 1)§/2]
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Interference from a linear array of N equal sources

@ Shall now generalize to a linear array of N identical sources all radiating in phase at
the same frequency.

=

\

\ e Each source will have amplitude a
x+dsinf

A

L 2dsng Suppose the first source is a distance x from P.

\
N

+3dsing @ Each successive source an extra distance d sin 6 from P

-

To far The total wave amplitude at P will be

distant point P

=
1

)d

YP)=y1+y2+...+yN
=a sin(wt — kx) + a sin(wt — k(x + d sin 6))
+ asin(wt — k(x + 2dsin6)) + ...
+ asin(wt — k(x + (N — 1)d sin 0))

This is the same kind of sum we evaluated earlier!

~—
[

X+ (N=1)dsin6

AN
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Interference from a linear array of N equal sources

Evaluation of amplitude sum

@ Have shown that the total amplitude from N sources is:
Y(P) =asin(wt — kx) + a sin(wt — k(x + d sin 0)) + a sin(wt — k(x + 2d sin6)) + ...
+ asin(wt — k(x + (N — 1)d sin 6))

@ Have shown earlier that

sin(N6/2) .

sinb + sin(b — 6) + sin(b —26) + ... + sin(b — (N — 1)6) = W sin[b— (N - 1)§/2]

@ Can now make the identifications:
0 = kdsin@ b=wt-kx
and use our formula to give
sin (1No)
Y(P) = asin(wt —kx — (N - 1)§/2) - ————=.
sin (%6)

@ The time averaged intensity is then

_ _ sin(%N(S) : _
sm(ié)
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Interference from a linear array of N equal sources

Checking the formula

@ Have shown that the intensity at P is

= IO( sin (%6)

W

—

x+dsinf

A

+2dsinf

\
N

o Check for N =2:
.2 21 21
_ _ § - 4sin” 56c08” 50 _
1(P) = Ty~ = Tp——25——2° = 4Ty cos”
sin® 56 sin® 56

+3dsin6

-

To far
distant point P as before.

=
1

yd

o Can simplify the results for N = 3,4 but gets tough for
larger N

\ nd . .
@ Usually put g=36= r sinf to give

AN

X+ (N=1)dsin6 J
sin® N8

s 2

IP) =1,
(P Osmﬁ
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Interference from a linear array of N equal sources

Structure of interference pattern

@ Principal maxima
o A maximum will occur if all the waves arrive at P exactly in phase.

@ This can occur here if d sin§ = nd

@ the distance from one source to P will be a whole number of wavelengths more (or less) than its
neighbour (or any other source).

e The condition for a maximum is then g = nx but the maximum intensity is indeterminate:

- _ sin®>nNn Om
IprinA max. 210,7 = S
sinfnr O

@ We have to calculate this by taking a limit. Put 8 = nr + €:

Iprin. max. = 1o =10 B

sin?(n7 + €) sin” €

- sin?(nN7 + Ne) 7sinzNe_7 sinNe € | 2
T "Ne sine

and take the limit as € — 0, using

. sine
lim — =1

e—0 €
togive  Tprin. max. = loN? for dsin6 = n4, the principal maxima of order n.
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Interference from a linear array of N equal sources

Structure of interference pattern (continued)

@ Minima

in N,

SlI'I B -0
inf

@ Minima will occur when I(P) = 0, i.e.

which gives sin N8 = 0 with sin3 # 0
@ If both sin N3 and sin 8 equal zero, get a principal maximum!
o FromsinNB =0we get NS =nrx n=0,+1,+2,...
but sing # 0 excludes n = 0, +N,+2N ...

@ So minima occur at
5:% n=H 1,42, £(N = DBCEN + 1), 22N - 1), 3N + 1), ...

@ Or spelt out, for positive 8 the minima are at:

T 2r (N-Dr T 2r (N -Dr
=W - —,...,— X1+ -, 1+ —,...,n+ ————, andsoon
AN NRTE T e
T T
principal maximum principal maximum and so on.

o Note that there will be N — 1 minima between successive principal maxima.
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Interference Pattern for N = 5 sources

Interference pattern with NV = 5 sources

25

/ N\ 2 VA AN FAN
JENRVAVAVAY IR VAVAVAY N A VNSNS A

L\
-2r  —=37/2 -m —7/2 0 /2 b 3m/2 21 B

e There are 4 minima between successive principal maxima

e There are 3 subsidiary maxima between successive principal maxima
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Interference from a linear array of N equal sources

Structure of interference pattern (continued)

@ Subsidiary maxima

@ We have determined the position of principal maxima where all the waves from all the
sources arrive at P in phase.

@ We have also found that there are N — 1 minima between these successive principal
maxima.

@ So there must be further maxima between these minimal!
o These lesser maxima occur when there is partial constructive interference.

e The position and magnitude of these subsidiary maxima found using calculus. Thus, setting

7 . 2
a_ o with 7=1,(5NE
dap sinf3
gives
tan NS
t. = —.
anf i

e This is a transcendental equation with no exact solutions.

e We can find the approximate positions of these maxima by assuming that they lie half-way
between successive minima.
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Interference from a linear array of N equal sources

Approximate solution for subsidiary maxima.

@ The minima occur at

B= % n = integer, n # multiple of N.

@ The subsidiary maxima will then occur at approximately

3 (n+ %)ﬂ

N n = integer, n # multiple of N.
@ These subsidiary maxima lie between successive minima.

o As there are N — 1 minima, there will be N — 2 subsidiary maxima between successive
principal maxima.

@ So there are no subsidiary maxima for N = 2.
@ The strength of a subsidiary maximum is given by

_ _ {sin [N+ Hyr/N| ]2 7,
: _

Tsub. max. = - =
Sub. max sin(n + Hyr/N sin? [(n + 1)n/N|
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Interference from a linear array of N equal sources

Approximate solution for subsidiary maxima (continued)

@ The first subsidiary maximum (i.e. the first subsidiary maximum next to a principal
maximum) has a strength given by

_ 1 )
Isyb, max. = + with n = 1.
sin (Eﬂ'/N)

@ For N large we have sin(%ﬂ/N) ~ (%n/N) so that

= 41,N? -
Toup. max. ~ 9‘;2 ~ 0.045 I,

o A principal maximum has a strength of Igrin. max. = N*Io
@ So the first subsidiary maximum is ~ 4.5% of the principal maximum.

@ Itis time to put all this together with some examples.
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Interference Pattern for N = 2 sources
Interference pattern with N = 2 sources

| 47 A~
A\ e \ N\
/\ /A /A A
TR JER /o !

[ [ [ -
A BN
L [

\ \

\ / \/

\ ] \

A\V4 | | A/ | ﬂ
-2r  —=37/2 -m b 3m/2 21

e There is one minimum between successive principal maxima

e There are no subsidiary maxima
PHYS201 Wave Mechanics 37/86
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Interference Pattern for N = 3 sources

Interference pattern with NV = 3 sources

A 9 " A
A\ N g N N
I { i \ A
™\ / 2\ i ™\
VN A (AN
\ /7 /N /o
RVARVARS \" LN/ VALV
-2r  —=37/2 -m /2 b

3m/2 2m ﬂ

e There are 2 minima between successive principal maxima

e There is one subsidiary maximum between successive principal maxima
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Interference Pattern for N = 4 sources

Interference pattern with N = 4 sources

A

i N

e There are 3 minima between successive principal maxima

e There are 2 subsidiary maxima between successive principal maxima
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Interference Pattern for N = 5 sources

Interference pattern with NV = 5 sources

25

/ N\ 2 VA AN FAN
JENRVAVAVAY IR VAVAVAY N A VNSNS A

L\
-2r  —=37/2 -m —7/2 0 /2 b 3m/2 21 B

e There are 4 minima between successive principal maxima

e There are 3 subsidiary maxima between successive principal maxima
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Interference Pattern for N = 10 sources

Interference pattern with N = 10 sources

100

A | A Al /‘ | AA L /\iFU TAV L A,/“‘ | A L~ IA'|
-2r  —=37/2 -m —7/2 0 /2 b 3m/2 21 B

e There are 9 minima between successive principal maxima

e There are 8 subsidiary maxima between successive principal maxima
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Interference Pattern for N = 100 sources

Interference pattern with N = 100 sources
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e There are 99 minima between successive principal maxima

o There are 98 subsidiary maxima between successive principal maxima
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Interference Pattern Polar Plots

@ The previous plots of interference patterns where plots as a function of 8 = nd sin 6/ 2,
and does not take account of the restriction that —1 < sinf < 1.

e This condition has the effect of limiting the number of principal maxima that can occur in
practice.

e For instance, since maxima occur when d sin 6 = n4, the possible values of n, and hence the
number of maxima are restricted by
-1<nd/d<1

and hence
—d/A<n<d/A.

@ Examples:

o Ifd < Athen d/A < 1 and the only maximum occurs for n = 0.

o Ifd = Athen —1 <n < 1 and there will be three maxima forn = 0, +1 i.e.
sinf=0,+1 = 0 =0, +x/2.
o Ifd =2.51then -2.5 < n < 2.5 and there will be 5 maxima forn = 0, +1,+2 i.e.
sing = nd/d = 0.4n = 0,+0.4,+0.8 = 0 = 0, +0.41 radians = 23.6°, +0.93 radians = 53°
and so on.
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Interference Pattern Polar Plot Il

n=1
dia = 1
N = 4
Two subsidiary maxima
hidden between
principal maxima
n=0
n=-1
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Interference Pattern Polar Plot IlI

d/ja = 25
N = 4 n=2
Two subsidiary maxima n=1

hidden between
principal maxima
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Interference Pattern Polar Plot IV

Subsidiary Maxima

dia = 25

Two subsidiary maxima n=
hidden between /
principal maxima /
n =
nx-2
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Interference Pattern Polar Plot V

Diffraction grating

dia = 55

1 sharp interference
ringes
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Diffraction

@ Diffraction is usually understood as the phenomenon in which waves ‘bend’ around
obstacles and around corners.

i

@ Diffraction can be understood as the limiting case of interference, but due to the
interference of waves from an infinity of sources.

@ What are these ‘sources’ and how do they enable us to understand diffraction?

@ The ‘sources’ are all the points on a wavefont. Each such source radiates so-called
Huygen’s wavelets, and it is these wavelets that combine to produce the propagating
wavefront.

o But first, what is a wave front?
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@ In general, a wavefront is those parts of a wave that are at the same phase in its
oscillation.

o A simple example is the ‘crest of a wave’: everywhere that the wave has reached its
maximum amplitude

@ Wavefronts of plane waves are a set of parallel lines (in @ Wavefronts of circular waves are a set of concentric
2D): circles (in 2D):

=

@ But a wave front is not just the crest of a wave.
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WaveFronts (continued)

@ Mathematically the definition of a wave front is all to do with phase
@ For the wave amplitude produced by a point source: y = asin(wt — kx + ¢).

@ The whole quantity (wt — kx + ¢) is known as the phase of the wave.

@ (Unfortunately, ¢ is also sometimes referred to as the phase, so beware.)
@ In general, a wavefront is a surface for which the phase has a constant value.

o For example, ‘the crest of a wave’ is where the wave has its maximum amplitude a
wt—kx+¢=mn+ %)ﬂ'.

o Now'‘freeze’ the wave at some instant in time .

@ The points where y has a maximum value will be
those a distance x from the source, given by

x= (wt +é-(n+ %)n) /k nan integer.

@ This is just the equation for circles (or spheres in
three dimensions) centered on S.

@ These circles are examples of wavefronts.

@ If n not an integer, still get a wavefront, but not
the crest of a wave.
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WaveFronts and Huygen’s wavelets

@ Wavefronts for plane waves passing through a slit spread out as they pass through the
opening:

@ Can determine how are wave front moves through
space by use of the Huygens-Fresnel construction

wavétront at

time #; Huygen’s wavelets

at time 7,
i @ Suppose that each point on a wavefront acts as a

source of spherical wavelets (called Huygen’s
wavelets):

Huygen’s"wavelets
sources,

@ These wavelets have the same frequency as the
primary wave

@ They have the same phase at their source as the
primary wave

@ They propagate at the same velocity as the primary
wave.
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Wavefront propagation via Huygen-Fresnel construction

Initial wavefront

Semester 1 2009 PHYS201 Wave Mechanics 52/86



Wavefront propagation via Huygen-Fresnel construction

Sources of Huygen's wavelets
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Wavefront propagation via Huygen-Fresnel construction

Adding in the wavelets from each source
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Wavefront propagation via Huygen-Fresnel construction

Adding in the wavelets from each source
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Wavefront propagation via Huygen-Fresnel construction

Adding in the wavelets from each source
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Wavefront propagation via Huygen-Fresnel construction

Adding in the wavelets from each source
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Wavefront propagation via Huygen-Fresnel construction
Leading edge of all the wavelets
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Wavefront propagation via Huygen-Fresnel construction

Approximate form of new wavefront
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Wavefront propagation via Huygen-Fresnel construction

Fitting the new wavefront
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Wavefront propagation via Huygen-Fresnel construction

The new wavefront at last!
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Wavefront propagation via Huygen-Fresnel construction

Huygen’s wavelets sources
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Wavefront propagation via Huygen-Fresnel construction

The wavelets
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Wavefront propagation via Huygen-Fresnel construction
Leading edge of all the wavelets
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Wavefront propagation via Huygen-Fresnel construction

Approximate form of new wavefront
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Wavefront propagation via Huygen-Fresnel construction

Fitting the new wavefront
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Wavefront propagation via Huygen-Fresnel construction

The next wavefront constructed . ..and so on!
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Implementing the Huygen-Fresnel construction

@ Replace a wavefront by a collection of secondary sources of Huygen’s wavelets.

@ Treat each source as being of equal strength and equal phase

@ Combine (i.e. add together) the amplitudes of the waves radiated by all of the sources
@ Take the limit in which the number of sources is allowed to go to infinity

e The sources then continuously fill the whole of the wavefront.

@ This usually means that the strength of each source also goes to zero, but in such a way
that the total amplitude due to all the waves combined is finite.

@ Note that this is an approximate procedure, but the Huygen’s wavelets idea is basically
sound.

@ A full analysis of the propagation of waves shows that the amplitude of the wavelets is
maximum in the forward direction, and falls to zero in the backward direction.

@ So there are no waves propagating in the backward direction.
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Fraunhofer diffraction through a narrow slit

@ Shall apply the Huygen-Fresnel construction to analyse the diffraction of waves
through a narrow slit in the Fraunhofer limit.

@ The distance of the observation point P is > width of the slit
and > the wavelength of the waves.

To far-distant

point P @ The other extreme is known as Fresnel diffraction, and is much

more complex.

@ Shall assume there are M sources, all of amplitude a and
separated by a distance

i~
- o>

b
d=——
M -1
Each point on the
wavefront inside
the slit acts as
a source of

@ From earlier work, the amplitude at P will be

. 1 /
herical 1 sin(5 Mo
spherical wavelets y(P):asin(wt—kx+%(M—1)5') .(21 )

sin(56")
2rd 2rtb
here 0 = —sinf = ———— siné.
w 1 sin M=-11 sin
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Fraunhofer diffraction through a narrow slit

The limit of many sources

: . ) sin(%Md’)
@ From the amplitude Y(P) = asin(wt — kx + 5(M — 1)6") ————
sin(56")
. o |, sin*(3M6")
the time averaged intensity will be I(P) = 1a —
sin"(36")
2nd b
6, = - 9 d = —
where sin 71

@ We want the limit as M — oo. The sources are then continuous along the wavefront.

@ Need to look at the numerator and denominator separately

d
o sin(1M&) = sin’ )g( g b 1] ° sinz(%é’)zsinz[% sina]
b 1
:Sil’l2 »ﬂbjne % =sin2[%sin0~m]
. o [nbsing .\
— sin 1 as M — oo. — 7s1n9 v as M — o

@ Recall, sinx =~ x ifx < 1.
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Fraunhofer diffraction through a narrow slit

Result for continuous line of sources

@ In the limit of infinitely many sources we find

sin (”7” sin 0) ]2

I(P) = lim }a*M
P) Moo 2 ”7” sin @

@ A slight problem:

o If ais held fixed, then as M — o the expression on the right hand side will diverge!
@ But physically, the result has to be finite.

@ So, the strength of each individual source of Huygen’s wavelets must tend to zero as
M — oo. In fact, we must have

aoc —,

M
e Soputly= Jim 1a®M*. (I is a constant, but we do not know its meaning yet.)
@ Finally,

. 2
7(P)=70S1n a

. b .
o with a = ”7 sin 6.
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Single slit diffraction pattern

@ The diffraction pattern is given by

sin® @

L b
T) =T, with @ = = sine.

a?

Iy

_Sn D _3 —mw I T 7T 3 2 o«
2 2 2 2 2 2
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Structure of single slit diffraction pattern

@ Maxima
e Can find the positions of the maxima by

differentiation: 7
d . . Central 0
a 2}() Sma [ cCoso _ sin o _ O maximum
da a a a?
which gives tana = a. Subsidiary
maxima
e This has one obvious solution: @ = 0.
Since
sina - -
lim =1 then I1(0)=1y
a—0
- . ) 5t Op_dx -m _Z L R
o Thus I is the intensity of the central a = 0 2 2 2 2 2 2

peak of the diffraction pattern.
@ But there are other maxima to be found by solving tan e = a.

e This is a transcendental equation for which there is no exact solution.

o Easiest way of solving tan @ = «a is graphically.
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Structure of single slit diffraction pattern

Graphical solution for subsidiary maxima

@ Obtain solution by plotting simultaneously y = @ and y = tan a.

y & tana

y =

1)
W9
&5
a2
=
IS

@ The curves intercept at @ = 0 and approximately at a ~ +(n + %)n, n=1,2,3,....

@ Since @ = % sin 6, maxima at

bsind=0 and  bsind =~ x(n+ 1)
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Structure of single slit diffraction pattern

Intensity of maxima.

@ The approximate maximum values follow

. 2
- - [SIna
from I(P) = IO( ) and are:
_ _ Central fo
Inax =1y for a=0 maximum
and Subsidiary
) maxima
_ (sin((n + }Hn)
z[o[—12 for a=@m+br
(n+3)r
- 1
=1l 1\2 2 St Qpg_3m - I TR 3 2 % o«
(n+3)°n -3 A= z Bl
4l
T @Qn+ 122

@ The first subsidiary maximum at @ = +37/2 has an intensity of Imax(n = 1) = 0.045], so
it is 4.5% of the central peak.

@ The intensity of subsequent peaks fall off rapidly as 1/x>.
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Structure of single slit diffraction pattern

@ Minima
_ e Minima occur whenT = 0i.e.
10 . 2
- [SIna
T (7) -0
a
= sina=0
e Exclude a = 0 — gives the central maximum.
@ So minima occur at
a = mn, m=® +1,+2
b
— sinf = mn
A
,% 7% % 2 sinf or  bsinf=mil

Beware: this looks like d sin 6 = nA, the equation
for interference maxima.
@ The first minima on either side of the central maximum occur at bsin§ = £1

o Increasing the wavelength or decreasing the slit width makes the central maximum wider
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Polar plot and observation screen diffraction pattern

@ On observation screen a distance ¢ from
| the slit, have usual approximation
z={tanf ~ {sind Z=£’tan9zfsin9
;. @ So maxima occur at
b b ¢ : o
{ ° Zz(n+%); n==+1,+2,...
e Minima at
12
| zzm; m==1,+2,...

o Figure on left for b = 34

@ A polar plot of intensity as a function of
angle 6 for b = 3.

@ @ weak subsidiary maxima at

bsing=+(n+3)A,n#0ie sinf=+} +3

@ Minimaatbsind =mAd, m #0i.e.
i — 4+l 42
sin@ = i3,13,i1
Semester 1 2009
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The diffraction grating

@ A diffraction grating (or transmission grating) consists of very many narrow, equally

—

spaced, parallel slits.

X1

X2

X

SRR

X4

Xs

Semester 1 2009

PHYS201

@ Constructed, for instance, by scratching
many fine parallel lines on a sheet of glass.

@ The region between the scratches is clear:
form the slits of non-zero width

@ The scratches themselves are opaque and
determine the distance between slits.

@ Light is passed through the grating,
producing a pattern on an observation
screen which is a combination of:

e The interference pattern due to the many
slits separated by a distance d

@ And the (unavoidable) diffraction pattern
associated with the width b of each slit.
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Calculation of diffraction grating interference pattern

N slits

M sources
per slit z
t } -

— .
/xz =71+ dsinf

— .
L3 =21+ 2dsin 6

= ﬁ‘# 3dsinf

—

Semester 1 2009

@ Pattern is calculated in two steps

o First calculate the amplitude of the waves at the
observation point produced by one slit of width »

@ This is the Huygen’s wavelets single slit diffraction
calculation just done.

@ Find that the total amplitude produced by a single slit
looks the same as that produced by a single source

@ So the N slits are replaced by N single sources
separated by a distance d

o Then we use our much earlier result for the

interference pattern of N sources to get the final
interference/diffraction pattern.
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Calculation of diffraction grating interference pattern |

Contribution of a single slit

@ The total amplitude at observation point P due to waves from
/' the n™" slit is, from earlier work:

Xn

: 1 7
sin| 5 M¢
y(P) = a# sin (w? — kv, — (M - 1)'/2)
I sin (56’)
]
' M sources of ,_ 2zb .
b Huygen’s wavelets where 0 = M-1 sin.
' in n™™ slit
{ : @ This is just the formula for a wave produced by a point source
sin (1 M¢’
o of amplitude a(zi)
sin (%6’)

e phase (M —1)6"/2

e and distance x, from the observation point P.
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Calculation of diffraction grating interference pattern Il

— sin (lMé’)
— ‘ @ Each source has an amplitude a— 21
./Hd;& 51n(55’)
+2dsinf

\

@ The n'" source is a distance x, = x + nd sin § from the
point of observation P.

d| +3dsinf

o

To far
distant point P

=
1

Dd o This is exactly the set-up of N equidistant sources

analyzed earlier.

@ So the intensity of the waves produced by all the
sources is

X+ (N=1)dsin6 J 7(P)=

D=

Y

- [sin (%M&)JZ [sin (1N0) )2
sin (%6’) sin(%d)
@ Taking the limit M — oo as before then gives

. 2 . 2
n-afSf ]

b d
= %sme and f= %sine
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Structure of diffraction pattern for diffraction grating

@ The Fraunhofer intensity pattern produced by waves of wavelength A incident on a
grating of N slits, all of width b and a distance d apart is

- - [sina’ sin Nf3 ’
I(P) = Iy X —
@ sinf3
= single slit diffraction pattern x N slit interference pattern
d - 4b 1004
N=10
“ nEdpsing/A

plotted on x axis.

604

LRIV
6 5 -4 3 2 Bl 0 1 2 3 1 5 6 n (order of fringe)
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Structure of diffraction pattern for diffraction grating

@ The Fraunhofer intensity pattern produced by waves of wavelength A incident on a
grating of N slits, all of width b and a distance d apart is

. 2 . 2
_ - s N,
1P = Io(sln(x) o (SII.I ﬁ)
a sinf3
= single slit diffraction pattern x N slit interference pattern
d=4b N
N =10
1 n=dsinf/A
plotted on x axis.
/\/\// \\/\m
E T T T T T S Y
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Structure of diffraction pattern for diffraction grating

@ The Fraunhofer intensity pattern produced by waves of wavelength A incident on a
grating of N slits, all of width b and a distance d apart is

- - (sina\’ sin N ’
I(P) = Iy X —
a sinf3
= single slit diffraction pattern x N slit interference pattern
d — 4b 1004
N=10
] n=dsinf/A
plotted on x axis.
Fringes 4 and 8 missing
NN S “ ﬁ [
-8 7 6 4 3 2 10 1 2 3 4 6 8 n (order of fringe)
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Missing Fringes

@ Recall the following features of interference and diffraction patterns:

e Maxima of the interference pattern occur when dsin 6 = nd

e Minima of the diffraction pattern occur when b sin 6 = mA

@ If an interference maximum coincides with a diffraction minimum, then the interference
maximum will be ‘missing’.

@ This will occur if the direction 6 is both an interference maximum d sin 6 = na
and a diffraction minimum b sin 6 = mA.

d
e Combining the two gives — = z
b m

@ Ifd/b = ny/my where ny and my are integers with no common factors, then

e any interference fringe n = rng where r is an integer will coincide with the diffraction
minimum m = rmyg

e Hence every ny™ fringe will be missing.
o E.g.if d/b =4/1 then every fourth interference fringe will be missing (see previous graphs).

o If d/b =3/2 then every third fringe will be missing.

Semester 1 2009 PHYS201 Wave Mechanics 85/86



Missing fringes continued

3" fringe
missing {

3" fringe
missing
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