PHYS201

DIffraction and Interference

Semester 12009

> J D Cresser
jcresser@physics.mq.edu.au
Rm C5C357
Ext 8913

Simple Harmonic Motion

- Oscillatory motion (the simple harmonic oscillator) is found throughout the physical world:
- Mass on a spring.
- Waves on a string.
- Electromagnetic waves are dynamically the same as the simple harmonic oscillator.
- Important in formulating the quantum version of electromagnetism: photons
- Elementary particles known as bosons are harmonic oscillators in disguise!!
- These are all essentially examples of mechanical oscillations
- But oscillatory properties of all waves - sound waves, water waves, light waves, probability (amplitude) waves of quantum mechanics - has other important consequences:
- Interference and
- Diffraction

The significance of interference and diffraction

- Interference and diffraction are uniquely characteristic of wave motion:
- Young's interference experiment showed that light was a form of wave motion
- Whereas Newton thought that light was made up of 'corpuscles'.
- Ironically, modern quantum mechanics says that light is made up of 'corpuscles', called photons!
- Overlapping waves from two sources combine to produce an interference pattern.
- The separation of the sources d is half the wavelength λ of the waves.
- Note the regions where the waves cancel (the diagonal lines) - destructive interference.
- Less easy to see: waves enhance midway between the cancellation regions - constructive interference.

Constructive and destructive interference.

- Waves from the two sources S_{1} and S_{2} arrive at P 'in-step' and hence reinforce.
- Waves are said to be 'in phase' and we get constructive interference.
- Waves from the two sources S_{1} and S_{2} arrive at P 'out-of-step' and hence cancel.
- Waves are said to be 'out of phase' and we destructive interference.
- In between talk about 'partial interference'.

Definition of Interference and Diffraction

- Interference occurs when waves from a finite number of sources are simultaneously present (superimposed) in the same region of space.
- Here sound waves from two speakers emitting a single tone (e.g. middle C $278 \mathrm{~Hz}, \lambda=1.2 \mathrm{~m}$) overlap creating regions of loudness (constructive interference) and quiet (destructive interference).
- Diffraction is the limiting case of interference when waves from an - essentially - infinite number of sources are superimposed.
- Diffraction is usually thought of in terms of the spreading of waves as they pass through a narrow opening or bend around an obstacle.
- Here ocean waves are diffracting around a headland.

Vector and Scalar theory of interference and diffraction

- Waves will often have an amplitude of oscillation, but also have a direction of oscillation.
- Waves on a string - just waggle the string in a circular motion.
- In electromagnetic waves, the electric and magnetic fields are vectors: they have both a magnitude and a direction.
- Have to use vector addition when combining different waves together: a much more difficult calculation
- We shall assume that the waves are scalars - no need for vector addition, just positive and negative numbers (and later, complex numbers).
- It turns out that the vector and the scalar theories give the same result in many cases!!

Interference

- Interference can arise in a number of ways:
- Two or more separate sources (e.g. two lasers, two or more radio aerials, two or more loudspeakers) radiating waves that will interfere when they are superimposed.
- Interference arising from the division of a wavefront. e.g. in two slit (Young's) interference experiment.
- Lower figure on left is of the observed interference pattern.
- Also get interference from a wave being partially reflected and partially transmitted through e.g. a sheet of glass.

Interference from two sources

- Shall study two source interference case in order to introduce
- constructive interference \& destructive interference
- the importance of phase difference

- What is required is the total disturbance at P due to waves from the two sources S_{1} and S_{2}.
- The 'disturbance' can be any kind of linear wave water wave, sound wave, light wave, gravitational wave, probability amplitude wave ... but not a shock wave: they are non-linear.
- Linear waves can be simply added together or 'superimposed'.
- Shall assume the waves generated by each source will have the same frequency (and wavelength)

Interference from two sources

- For an outwardly spherically expanding wave $y=a \sin (\omega t-k x+\phi)$
- y is called the amplitude of the disturbance - note new meaning for 'amplitude'.
- a is also called the amplitude so beware of the context.
- ω (angular frequency) $=2 \pi f \quad k$ (wave number) $=2 \pi / \lambda$
- At the source $(x=0) y \propto \sin (\omega t+\phi)$. ϕ is the phase of the source oscillations.
- Why the proportionality sign?

- the amplitude a falls off as $1 / x$.
- So, at the source, $a=\infty!!!$
- But no source is a true point, so a will be assumed finite always.
- In fact, we will assume a is a constant.

Interference from two sources

- Amplitude of wave at P due to wave from S_{1} is

$$
y_{1}(P)=a_{1} \sin \left(\omega t-k x_{1}+\phi_{1}\right)
$$

- Similarly, the amplitude of the wave at P due to waves originating from S_{2} is

$$
y_{2}(P)=a_{2} \sin \left(\omega t-k x_{2}+\phi_{2}\right)
$$

- At the sources $x_{1}=0$ and $x_{2}=0$ the amplitudes are

$$
y_{1} \propto \sin \left(\omega t+\phi_{1}\right) \quad \text { and } \quad y_{2} \propto \sin \left(\omega t+\phi_{2}\right) .
$$

- The phase difference $\phi_{1}-\phi_{2}$ tell us by how much the waves at the sources are out-of-step.

Interference from two sources

- The total amplitude $y(P)$ at P is obtained by simple addition: $y(P)=y_{1}(P)+y_{2}(P)$
- This is what we mean by 'superposition' of two waves.
$y(P)=a_{1} \sin \left(\omega t-k x_{1}+\phi_{1}\right)+a_{2} \sin \left(\omega t-k x_{2}+\phi_{2}\right)$.
- What is almost always measured for any wave is not its amplitude but its intensity
- Intensity is defined differently for different kinds of waves, but in every case, it is proportional to the square of the amplitude:

$$
\text { 'Instantaneous Intensity' } I=y^{2}
$$

- This is known as the instantaneous intensity as it gives the intensity at each instant in time.

Interference from two sources

- Instantaneous intensity for combined waves at P is (leave out P for the present)

$$
\begin{aligned}
I=y^{2} & =\left(y_{1}+y_{2}\right)^{2} \\
& =y_{1}^{2}+y_{2}^{2}+2 y_{1} y_{2} \\
& =I_{1}+I_{2}+2 y_{1} y_{2}
\end{aligned}
$$

Here I_{1} and I_{2} are the instantaneous intensities at P due to waves originating from sources S_{1} and S_{2} respectively.

- Written out in full:
$I(P)=a_{1}^{2} \sin ^{2}\left(\omega t-k x_{1}+\phi_{1}\right)+a_{2}^{2} \sin ^{2}\left(\omega t-k x_{2}+\phi_{2}\right)+2 a_{1} a_{2} \sin \left(\omega t-k x_{1}+\phi_{1}\right) \sin \left(\omega t-k x_{2}+\phi_{2}\right)$
- Now we use trigonometry to work out the last term:

$$
\sin A \sin B=\frac{1}{2}(\cos (A-B)-\cos (A+B))
$$

to give

$$
\begin{aligned}
I(P)= & a_{1}^{2} \sin ^{2}\left(\omega t-k x_{1}+\phi_{1}\right)+a_{2}^{2} \sin ^{2}\left(\omega t-k x_{2}+\phi_{2}\right) \\
& +a_{1} a_{2}\left\{\cos \left[k\left(x_{2}-x_{1}\right)+\phi_{1}-\phi_{2}\right]-\cos \left[k\left(x_{1}+x_{2}\right)-2 \omega t-\phi_{1}-\phi_{2}\right]\right\}
\end{aligned}
$$

- The expression for $I(P)$ just obtained

$$
\begin{aligned}
I(P)= & a_{1}^{2} \sin ^{2}\left(\omega t-k x_{1}+\phi_{1}\right)+a_{2}^{2} \sin ^{2}\left(\omega t-k x_{2}+\phi_{2}\right) \\
& +a_{1} a_{2}\left\{\cos \left[k\left(x_{2}-x_{1}\right)+\phi_{1}-\phi_{2}\right]-\cos \left[k\left(x_{1}+x_{2}\right)-2 \omega t-\phi_{1}-\phi_{2}\right]\right\}
\end{aligned}
$$

contains terms that are oscillating in time with a frequency 2ω.

- In general however, these oscillations occur so quickly that it is impossible to follow them
- e.g. for light at optical frequencies $f \sim 10^{15} \mathrm{~Hz}$.
- Even the oscillations of audible sound waves for which $f \sim 200-400 \mathrm{~Hz}$ or higher.
- But for slowly oscillating quantities, like the tide, the amplitude can be monitored directly.
- We shall assume we are working with high frequency signals. In such cases, all we can reasonably measure is the intensity averaged over many periods of oscillation.
- Shall use some well known results:

$$
\overline{\sin ^{2}(\omega t+\theta)}=\frac{1}{2} .
$$

$$
\overline{\sin (\omega t+\theta)}=0 .
$$

Average $=\frac{1}{2}$

- So

$$
I_{1}=\overline{y_{1}^{2}}=a_{1}^{2} \sin ^{2}\left(\omega t-k x_{1}+\phi_{1}\right) \longrightarrow \bar{I}_{1}=a_{1}^{2} \overline{\sin ^{2}\left(\omega t-k x_{1}+\phi_{1}\right)}=\frac{1}{2} a_{1}^{2}
$$

- And

$$
\overline{\cos \left[k\left(x_{1}+x_{2}\right)-2 \omega t-\phi_{1}-\phi_{2}\right]}=0
$$

Interference from two sources

Time averaged intensity continued

- Putting it all together

$$
\begin{aligned}
I(P)= & a_{1}^{2} \sin ^{2}\left(\omega t-k x_{1}+\phi_{1}\right)+a_{2}^{2} \sin ^{2}\left(\omega t-k x_{2}+\phi_{2}\right) \\
& +a_{1} a_{2}\left\{\cos \left[k\left(x_{2}-x_{1}\right)+\phi_{1}-\phi_{2}\right]-\cos \left[k\left(x_{1}+x_{2}\right)-2 \omega t-\phi_{1}-\phi_{2}\right]\right\}
\end{aligned}
$$

becomes

$$
\begin{aligned}
\bar{I}(P) & =\frac{1}{2} a_{1}^{2}+\frac{1}{2} a_{2}^{2}+a_{1} a_{2} \cos \left[k\left(x_{2}-x_{1}\right)+\phi_{1}-\phi_{2}\right] \\
& =\bar{I}_{1}+\bar{I}_{2}+2 \sqrt{\bar{I}_{1} \bar{I}_{2}} \cos \delta
\end{aligned}
$$

where $\delta=k\left(x_{2}-x_{1}\right)+\phi_{1}-\phi_{2}$.

- We shall make two further assumptions:
- The sources are of equal strength, $a_{1}=a_{2}=a$ so $\bar{I}_{1}=\bar{I}_{2}=\bar{I}_{0}$
- The sources are in phase $\phi_{1}=\phi_{2}$.
- Tutorial exercises will look at what happens if these conditions are not satisfied.

Interference from two equal strength sources

- For equal strength, in phase sources, we get

$$
\bar{I}(P)=2 \bar{I}_{0}+2 \bar{I}_{0} \cos \delta=2 \bar{I}_{0}(1+\cos \delta)=4 \bar{I}_{0} \cos ^{2} \frac{1}{2} \delta
$$

where

$$
\delta=k\left(x_{2}-x_{1}\right)=\frac{2 \pi}{\lambda}\left(x_{2}-x_{1}\right) .
$$

- Constructive interference occurs when the intensity at P reaches a maximum.
- This will occur when $\cos ^{2} \frac{1}{2} \delta=1$:

$$
\bar{I}(P)=4 \bar{I}_{0} \quad \text { for } \quad \cos ^{2} \frac{1}{2} \delta=1 .
$$

Which gives

$$
\begin{gathered}
\frac{1}{2} \delta=\frac{\pi}{\lambda}\left(x_{2}-x_{1}\right)=n \pi \quad n \quad \text { an integer } \\
\Downarrow \\
x_{2}-x_{1}=n \lambda
\end{gathered}
$$

- The path difference $x_{2}-x_{1}$ must be an integer number of wavelengths.
- The waves leave S_{1} and S_{2} in step as $\phi_{1}=\phi_{2}$ and arrive at P in step.

Interference from two equal strength sources

- Destructive interference occurs when $\bar{I}(P)=4 \bar{I}_{0} \cos ^{2} \frac{1}{2} \delta$ is a minimum, i.e. zero.
- Requires $\cos \frac{1}{2} \delta=0$ which gives

$$
\begin{gathered}
\frac{1}{2} \delta=\frac{\pi}{\lambda}\left(x_{2}-x_{1}\right)=\left(n+\frac{1}{2}\right) \pi \quad n \quad \text { an integer } \\
\Downarrow \\
x_{2}-x_{1}=\left(n+\frac{1}{2}\right) \lambda .
\end{gathered}
$$

- The path difference $x_{2}-x_{1}$ must be a half integer number of wavelengths.
- The waves leave S_{1} and S_{2} in step, but arrive at P exactly out of step.
- One wave has to travel $1 \frac{1}{2}$ or $2 \frac{1}{2}$ or $3 \frac{1}{2} \ldots$ wavelengths further on the way to the point P.

Interference from two equal strength sources

Interference maxima in space

- Can derive a formula for the position in space of the interference maxima:

$$
\frac{4 y^{2}}{n^{2} \lambda^{2}}-\frac{4 x^{2}}{d^{2}-n^{2} \lambda^{2}}=1 \quad n=0,1,2,3, \ldots, \quad \text { such that } \quad n \lambda \leq d
$$

- $d=3 \lambda$ in figure below.

- Will be asked to analyse this result in an assignment question.

Polar Plots

- A very useful way to represent the directional properties of the interference pattern due to two or more sources is to plot the intensity as a function of direction.
- The idea is to work out what the intensity of the combined waves are at a long distance from the sources (the Fraunhofer condition):

- Since $\bar{I}(P)=4 \bar{I}_{0} \cos ^{2} \frac{1}{2} \delta$ with $\delta=\frac{2 \pi}{\lambda}\left(x_{2}-x_{1}\right)$ then

$$
\begin{aligned}
\bar{I}(P) & =4 \bar{I}_{0} \cos ^{2}\left(\frac{\pi\left(x_{2}-x_{1}\right)}{\lambda}\right) \\
& =4 \bar{I}_{0} \cos ^{2}\left(\frac{\pi d \sin \theta}{\lambda}\right)
\end{aligned}
$$

- A natural way to plot this is as a function of angle as a polar plot.

Polar Plots continued

- To illustrate, shall suppose that $d=\lambda$. Then

$$
\bar{I}(\theta)=4 \bar{I}_{0} \cos ^{2}(\pi \sin \theta)
$$

- Plot this by calculating $\bar{I}(\theta)$ for each value of θ, but then draw a line from the origin out a distance $\propto \bar{I}(\theta)$ at an angle θ to the 'horizontal' direction.

- It is usually sufficient to determine the angles at which the intensity is a maximum or a minimum, mark those points, and sketch in the curve joining those points.
- Maxima ($\bar{I}=4 \bar{I}_{0}$) occur when $\pi \sin \theta=n \pi, n=0, \pm 1, \pm 2, \ldots$.

$$
\text { i.e. } \quad \sin \theta=n \quad n=0, \pm 1, \pm 2 \ldots
$$

- Note that $-1 \leq \sin \theta \leq 1$, which cuts off the allowed values of n to $n=0, \pm 1$.
- So maxima occur at

$$
\sin \theta=0 \Rightarrow \theta=0, \pi \quad \text { and } \quad \sin \theta= \pm 1 \Rightarrow \theta= \pm \frac{\pi}{2}
$$

- Minima $(\bar{I}=0)$ occur when $\pi \sin \theta=\left(n+\frac{1}{2}\right) \pi, n=0, \pm 1, \pm 2, \ldots$

$$
\text { i.e. } \quad \sin \theta=\left(n+\frac{1}{2}\right) \quad n=0, \pm 1, \pm 2, \ldots
$$

- So minima occur at $\sin \theta= \pm \frac{1}{2} \Rightarrow \theta= \pm \frac{\pi}{6}, \pm \frac{5 \pi}{6}$.

Young's interference experiment

- This was the first experiment (1803) to show that light was a form of wave motion, and not made up of 'bullet-like' corpuscles as proposed by Newton.
- Waves are incident from a very far distant
 source.
- The 'wave fronts' reach the slits S_{1} and S_{2} simultaneously, so waves are in phase when they reach the slits.
- The waves spread out after passing through the slits (diffraction), so the slits act as in phase sources of waves.
- Shall assume the Fraunhofer condition

$$
\ell \gg d
$$

so the approximation can be made:

$$
x_{2}-x_{1} \approx d \sin \theta
$$

Young's interference experiment continued

- The set-up is equivalent to the two source problem studied earlier, so

$$
\bar{I}(P)=4 \bar{I}_{0} \cos ^{2} \frac{1}{2} \delta \quad \delta=\frac{2 \pi}{\lambda}\left(x_{2}-x_{1}\right)
$$

where \bar{I}_{0} is the intensity at P due to the waves from one slit only.

- Using approximate result $x_{2}-x_{1} \approx d \sin \theta$:

$$
\bar{I}(P)=4 \bar{I}_{0} \cos ^{2}\left(\frac{\pi d}{\lambda} \sin \theta\right)
$$

- We are after the interference pattern on the observation screen, so we want $\bar{I}(P)$ as a function of z.

- For $\theta<25^{\circ} \quad \sin \theta \approx \tan \theta=\frac{z}{\ell}, ~ \begin{aligned} & \therefore \quad \bar{I}(P) \approx 4 \bar{I}_{0} \cos ^{2}\left(\frac{\pi d}{\lambda} \frac{z}{\ell}\right) .\end{aligned}$

Young's interference experiment

- Maxima when $\cos ^{2}\left(\frac{\pi d}{\lambda} \frac{z}{\ell}\right)=1$
- Minima when $\cos ^{2}\left(\frac{\pi d}{\lambda} \frac{z}{\ell}\right)=0$

$$
\begin{aligned}
\Rightarrow & \frac{\pi d}{\lambda} \frac{z}{\ell} & =n \pi \quad n=0, \pm 1, \pm 2, \ldots . & \Rightarrow
\end{aligned} \frac{\pi d}{\lambda} \frac{z}{\ell}=\left(n+\frac{1}{2}\right) \pi \quad n=0, \pm 1, \pm 2, \ldots .
$$

$$
\text { Order of fringes } \longrightarrow \quad n=-2 n=-1 \quad n=0
$$

Young's interference experiment

- Each bright interference maximum is known as an interference fringe
- The maximum positioned at $z_{n}=n\left(\frac{\lambda \ell}{d}\right)$ is known as the $\mathrm{n}^{\text {th }}$ order fringe.
- Adjacent fringes are equally separated:

$$
z_{n+1}-z_{n}=\frac{\lambda \ell}{d}
$$

(except for angles greater than about 25° when the fringes become further apart.)

- Two limiting cases:
- For increasing d, the fringes become closer together.
- For decreasing d, eventually find $\pi \frac{d}{\lambda} \sin \theta \ll 1$. But $\cos x \approx 1$ if $x \ll 1$ so

$$
\bar{I}(P)=4 \bar{I}_{0} \cos ^{2}\left(\frac{\pi d}{\lambda} \sin \theta\right) \approx 4 \bar{I}_{0} .
$$

- Thus there are no fringes on the observation screen.
- Get the result expected if the two sources (slits) coincided.

Some useful properties of complex numbers

- In the following analysis we will need to make use of complex numbers as an aid in adding together large numbers of sin functions.
- Recall that we have had to calculate sums like

$$
y=a_{1} \sin \left(\omega t-k x_{1}+\phi_{1}\right)+a_{2} \sin \left(\omega t-k x_{2}+\phi_{2}\right) .
$$

- Such sums become prohibitively difficult to do if we have $5,10,50, \ldots$ separate sources.
- Can use complex number methods to greatly simplify such calculations.
- Recall Euler's theorem: $\quad e^{i x}=\cos x+i \sin x \quad i=\sqrt{-1}$.
- So that

$$
\begin{aligned}
\cos x & =\operatorname{Re} e^{i x} & & \operatorname{Re} \equiv \text { real part } \\
\sin x & =\operatorname{Im} e^{i x} & & \operatorname{Im} \equiv \text { imaginary part. }
\end{aligned}
$$

- and complex conjugate: $e^{-i x}=\cos x-i \sin x$.
- and $\quad \cos x=\frac{e^{i x}+e^{-i x}}{2} \quad \sin x=\frac{e^{i x}-e^{-i x}}{2 i}$.

A useful geometric sum

- Will use complex number methods to calculate the sum of N terms:

$$
S=\sin b+\sin (b-\delta)+\sin (b-2 \delta)+\ldots+\sin (b-(N-1) \delta)
$$

- arises in study of N-slit interference and diffraction through a slit.
- Impossible to do as is, but can turn it into a simple problem by using complex algebra:

$$
\sin (b-n \delta)=\operatorname{Im} e^{i(b-n \delta)}
$$

so that

$$
\begin{aligned}
S & =\operatorname{Im}\left[e^{i b}+e^{i(b-\delta)}+e^{i(b-2 \delta)}+\ldots+e^{i(b-(N-1) \delta)}\right] \\
& =\operatorname{Im}\left\{e^{i b}\left[1+e^{-i \delta}+e^{-2 i \delta}+\ldots+e^{-i(N-1) \delta}\right]\right\}
\end{aligned}
$$

- Now put $r=e^{-i \delta}$. We end up with a geometric series with common ratio r :

$$
\begin{aligned}
S & =\operatorname{Im}\left\{e^{i b}\left[1+r+r^{2}+\ldots+r^{N-1}\right]\right\} \\
& =\operatorname{Im}\left\{e^{i b} \frac{1-r^{N}}{1-r}\right\} \\
& =\operatorname{Im}\left\{e^{i b} \frac{1-e^{-i N \delta}}{1-e^{-i \delta}}\right\}
\end{aligned}
$$

A useful geometric sum (continued)

- The expression just obtained is expressed in terms of complex quantities. We need a result in terms of real quantities. So, a trick:

$$
S=\operatorname{Im}\left\{e^{i b} \frac{1-e^{-i N \delta}}{1-e^{-i \delta}}\right\}=\operatorname{Im}\left\{e^{i b} \cdot \frac{e^{-i N \delta / 2}}{e^{-i \delta / 2}} \cdot \frac{e^{i N \delta / 2}-e^{-i N \delta / 2}}{e^{i \delta / 2}-e^{-i \delta / 2}}\right\}
$$

which sets us up to use $\quad \sin x=\frac{e^{i x}-e^{-i x}}{2 i}$ to give

$$
\begin{aligned}
S=\operatorname{Im}\left\{e^{i b} e^{-i(N-1) \delta / 2} \frac{\sin (N \delta / 2)}{\sin (\delta / 2)}\right\} & =\frac{\sin (N \delta / 2)}{\sin (\delta / 2)} \operatorname{lm}\left\{e^{i(b-(N-1) \delta / 2)}\right\} \\
\therefore \quad S & =\frac{\sin (N \delta / 2)}{\sin (\delta / 2)} \sin [b-(N-1) \delta / 2]
\end{aligned}
$$

- So finally

$$
\sin b+\sin (b-\delta)+\sin (b-2 \delta)+\ldots+\sin (b-(N-1) \delta)=\frac{\sin (N \delta / 2)}{\sin (\delta / 2)} \sin [b-(N-1) \delta / 2]
$$

Interference from a linear array of N equal sources

- Shall now generalize to a linear array of N identical sources all radiating in phase at the same frequency.

- Each source will have amplitude a
- Suppose the first source is a distance x from P.
- Each successive source an extra distance $d \sin \theta$ from P
- The total wave amplitude at P will be

$$
\begin{aligned}
y(P)= & y_{1}+y_{2}+\ldots+y_{N} \\
= & a \sin (\omega t-k x)+a \sin (\omega t-k(x+d \sin \theta)) \\
& +a \sin (\omega t-k(x+2 d \sin \theta))+\ldots \\
& +a \sin (\omega t-k(x+(N-1) d \sin \theta))
\end{aligned}
$$

- This is the same kind of sum we evaluated earlier!

Interference from a linear array of N equal sources
 Evaluation of amplitude sum

- Have shown that the total amplitude from N sources is:

$$
\begin{aligned}
y(P)= & a \sin (\omega t-k x)+a \sin (\omega t-k(x+d \sin \theta))+a \sin (\omega t-k(x+2 d \sin \theta))+\ldots \\
& +a \sin (\omega t-k(x+(N-1) d \sin \theta))
\end{aligned}
$$

- Have shown earlier that

$$
\sin b+\sin (b-\delta)+\sin (b-2 \delta)+\ldots+\sin (b-(N-1) \delta)=\frac{\sin (N \delta / 2)}{\sin (\delta / 2)} \sin [b-(N-1) \delta / 2]
$$

- Can now make the identifications:

$$
\delta=k d \sin \theta \quad b=\omega t-k x
$$

and use our formula to give

$$
y(P)=a \sin (\omega t-k x-(N-1) \delta / 2) \cdot \frac{\sin \left(\frac{1}{2} N \delta\right)}{\sin \left(\frac{1}{2} \delta\right)}
$$

- The time averaged intensity is then

$$
\bar{I}(P)=\bar{I}_{0}\left(\frac{\sin \left(\frac{1}{2} N \delta\right)}{\sin \left(\frac{1}{2} \delta\right)}\right)^{2} \quad \text { with } \quad \bar{I}_{0}=\frac{1}{2} a^{2} \quad \text { the intensity due to one source. }
$$

Interference from a linear array of N equal sources

- Have shown that the intensity at P is

$$
\bar{I}(P)=\bar{I}_{0}\left(\frac{\sin \left(\frac{1}{2} N \delta\right)}{\sin \left(\frac{1}{2} \delta\right)}\right)^{2}
$$

- Check for $N=2$:

$$
\bar{I}(P)=\bar{I}_{0} \frac{\sin ^{2} \delta}{\sin ^{2} \frac{1}{2} \delta}=\bar{I}_{0} \frac{4 \sin ^{2} \frac{1}{2} \delta \cos ^{2} \frac{1}{2} \delta}{\sin ^{2} \frac{1}{2} \delta}=4 \bar{I}_{0} \cos ^{2} \frac{1}{2} \delta
$$

as before.

- Can simplify the results for $N=3,4$ but gets tough for larger N
- Usually put $\beta=\frac{1}{2} \delta=\frac{\pi d}{\lambda} \sin \theta \quad$ to give

$$
\bar{I}(P)=\bar{I}_{0} \frac{\sin ^{2} N \beta}{\sin ^{2} \beta}
$$

Interference from a linear array of N equal sources
 Structure of interference pattern

- Principal maxima

- A maximum will occur if all the waves arrive at P exactly in phase.
- This can occur here if $d \sin \theta=n \lambda$
- the distance from one source to P will be a whole number of wavelengths more (or less) than its neighbour (or any other source).
- The condition for a maximum is then $\beta=n \pi$ but the maximum intensity is indeterminate:

$$
\bar{I}_{\text {prin. max. }}=\bar{I}_{0} \frac{\sin ^{2} n N \pi}{\sin ^{2} n \pi}=\frac{0}{0}!!!
$$

- We have to calculate this by taking a limit. Put $\beta=n \pi+\epsilon$:

$$
\bar{I}_{\text {prin. max. }}=\bar{I}_{0} \frac{\sin ^{2}(n N \pi+N \epsilon)}{\sin ^{2}(n \pi+\epsilon)}=\bar{I}_{0} \frac{\sin ^{2} N \epsilon}{\sin ^{2} \epsilon}=\bar{I}_{0}\left[\frac{\sin N \epsilon}{N \epsilon} \cdot \frac{\epsilon}{\sin \epsilon}\right]^{2} \cdot N^{2}
$$

and take the limit as $\epsilon \rightarrow 0$, using

$$
\lim _{\epsilon \rightarrow 0} \frac{\sin \epsilon}{\epsilon}=1
$$

to give $\quad \bar{I}_{\text {prin. max. }}=\bar{I}_{0} N^{2}$ for $d \sin \theta=n \lambda$, the principal maxima of order n.

Interference from a linear array of N equal sources
 Structure of interference pattern (continued)

- Minima

- Minima will occur when $\bar{I}(P)=0$, i.e. $\frac{\sin N \beta}{\sin \beta}=0$
which gives $\sin N \beta=0$ with $\sin \beta \neq 0$
- If both $\sin N \beta$ and $\sin \beta$ equal zero, get a principal maximum!
- From $\sin N \beta=0$ we get $N \beta=n \pi \quad n=0, \pm 1, \pm 2, \ldots$
but $\sin \beta \neq 0$ excludes $n=0, \pm N, \pm 2 N \ldots$
- So minima occur at

$$
\beta=\frac{n \pi}{N} \quad n=\nsupseteq, \pm 1, \pm 2, \ldots, \pm(N-1), \pm \not, \pm(N+1), \ldots, \pm(2 N-1), \pm \nless N, \pm(2 N+1), \ldots
$$

- Or spelt out, for positive β the minima are at:

- Note that there will be $N-1$ minima between successive principal maxima.

Interference Pattern for $N=5$ sources

Interference pattern with $N=5$ sources

- There are 4 minima between successive principal maxima
- There are 3 subsidiary maxima between successive principal maxima

Interference from a linear array of N equal sources
 Structure of interference pattern (continued)

- Subsidiary maxima
- We have determined the position of principal maxima where all the waves from all the sources arrive at P in phase.
- We have also found that there are $N-1$ minima between these successive principal maxima.
- So there must be further maxima between these minima!
- These lesser maxima occur when there is partial constructive interference.
- The position and magnitude of these subsidiary maxima found using calculus. Thus, setting

$$
\frac{d \bar{I}}{d \beta}=0 \quad \text { with } \quad \bar{I}=\bar{I}_{0}\left(\frac{\sin N \beta}{\sin \beta}\right)^{2}
$$

gives

$$
\tan \beta=\frac{\tan N \beta}{N} .
$$

- This is a transcendental equation with no exact solutions.
- We can find the approximate positions of these maxima by assuming that they lie half-way between successive minima.

Interference from a linear array of N equal sources

- The minima occur at

$$
\beta=\frac{n \pi}{N} \quad n=\text { integer, } n \neq \text { multiple of } N .
$$

- The subsidiary maxima will then occur at approximately

$$
\beta=\frac{\left(n+\frac{1}{2}\right) \pi}{N} \quad n=\text { integer, } n \neq \text { multiple of } N .
$$

- These subsidiary maxima lie between successive minima.
- As there are $N-1$ minima, there will be $N-2$ subsidiary maxima between successive principal maxima.
- So there are no subsidiary maxima for $N=2$.
- The strength of a subsidiary maximum is given by

$$
\bar{I}_{\text {sub. max. }}=\bar{I}_{0}\left(\frac{\sin \left[N\left(n+\frac{1}{2}\right) \pi / N\right]}{\sin \left(n+\frac{1}{2}\right) \pi / N}\right)^{2}=\frac{\bar{I}_{0}}{\sin ^{2}\left[\left(n+\frac{1}{2}\right) \pi / N\right]}
$$

- The first subsidiary maximum (i.e. the first subsidiary maximum next to a principal maximum) has a strength given by

$$
\bar{I}_{\text {sub. max. }}=\frac{\bar{I}_{0}}{\sin ^{2}\left(\frac{3}{2} \pi / N\right)} \quad \text { with } n=1
$$

- For N large we have $\sin \left(\frac{3}{2} \pi / N\right) \approx\left(\frac{3}{2} \pi / N\right)$ so that

$$
\bar{I}_{\text {sub. max. }} \approx \frac{4 \bar{I}_{0} N^{2}}{9 \pi^{2}} \approx 0.045 \bar{I}_{0} N^{2}
$$

- A principal maximum has a strength of $\bar{I}_{\text {prin. max. }}=N^{2} \bar{I}_{0}$
- So the first subsidiary maximum is $\sim 4.5 \%$ of the principal maximum.
- It is time to put all this together with some examples.

Interference Pattern for $N=2$ sources

Interference pattern with $N=2$ sources

- There is one minimum between successive principal maxima
- There are no subsidiary maxima

Interference Pattern for $N=3$ sources

Interference pattern with $N=3$ sources

- There are 2 minima between successive principal maxima
- There is one subsidiary maximum between successive principal maxima

Interference Pattern for $N=4$ sources

Interference pattern with $N=4$ sources

- There are 3 minima between successive principal maxima
- There are 2 subsidiary maxima between successive principal maxima

Interference Pattern for $N=5$ sources

Interference pattern with $N=5$ sources

- There are 4 minima between successive principal maxima
- There are 3 subsidiary maxima between successive principal maxima

Interference Pattern for $N=10$ sources

Interference pattern with $N=10$ sources

- There are 9 minima between successive principal maxima
- There are 8 subsidiary maxima between successive principal maxima

Interference Pattern for $N=100$ sources

Interference pattern with $N=100$ sources

- There are 99 minima between successive principal maxima
- There are 98 subsidiary maxima between successive principal maxima

Interference Pattern Polar Plots

- The previous plots of interference patterns where plots as a function of $\beta=\pi d \sin \theta / \lambda$, and does not take account of the restriction that $-1 \leq \sin \theta \leq 1$.
- This condition has the effect of limiting the number of principal maxima that can occur in practice.
- For instance, since maxima occur when $d \sin \theta=n \lambda$, the possible values of n, and hence the number of maxima are restricted by

$$
-1 \leq n \lambda / d \leq 1
$$

and hence

$$
-d / \lambda \leq n \leq d / \lambda
$$

- Examples:
- If $d<\lambda$ then $d / \lambda<1$ and the only maximum occurs for $n=0$.
- If $d=\lambda$ then $-1 \leq n \leq 1$ and there will be three maxima for $n=0, \pm 1$ i.e.

$$
\sin \theta=0, \pm 1 \Longrightarrow \theta=0, \pm \pi / 2
$$

- If $d=2.5 \lambda$ then $-2.5 \leq n \leq 2.5$ and there will be 5 maxima for $n=0, \pm 1, \pm 2$ i.e.

$$
\sin \theta=n \lambda / d=0.4 n=0, \pm 0.4, \pm 0.8 \Longrightarrow \theta=0, \pm 0.41 \text { radians }=23.6^{\circ}, \pm 0.93 \text { radians }=53^{\circ}
$$

and so on.

Interference Pattern Polar Plot II

$$
\begin{aligned}
d / \lambda & =1 \\
N & =4
\end{aligned}
$$

Two subsidiary maxima hidden between principal maxima

Interference Pattern Polar Plot III

$$
\begin{aligned}
d / \lambda & =2.5 \\
N & =4
\end{aligned}
$$

Two subsidiary maxima hidden between principal maxima

$$
\begin{aligned}
d / \lambda & =2.5 \\
N & =4
\end{aligned}
$$

Two subsidiary maxima hidden between principal maxima

Interference Pattern Polar Plot V
Diffraction grating

$$
\begin{aligned}
d / \lambda & =5.5 \\
N & =40
\end{aligned}
$$

Diffraction

- Diffraction is usually understood as the phenomenon in which waves 'bend' around obstacles and around corners.

- Diffraction can be understood as the limiting case of interference, but due to the interference of waves from an infinity of sources.
- What are these 'sources' and how do they enable us to understand diffraction?
- The 'sources' are all the points on a wavefont. Each such source radiates so-called Huygen's wavelets, and it is these wavelets that combine to produce the propagating wavefront.
- But first, what is a wave front?

Wavefronts

- In general, a wavefront is those parts of a wave that are at the same phase in its oscillation.
- A simple example is the 'crest of a wave': everywhere that the wave has reached its maximum amplitude
- Wavefronts of plane waves are a set of parallel lines (in 2D):

- Wavefronts of circular waves are a set of concentric circles (in 2D):

WaveFronts (continued)

- Mathematically the definition of a wave front is all to do with phase
- For the wave amplitude produced by a point source: $y=a \sin (\omega t-k x+\phi)$.
- The whole quantity $(\omega t-k x+\phi)$ is known as the phase of the wave.
- (Unfortunately, ϕ is also sometimes referred to as the phase, so beware.)
- In general, a wavefront is a surface for which the phase has a constant value.
- For example, 'the crest of a wave' is where the wave has its maximum amplitude a $\omega t-k x+\phi=\left(n+\frac{1}{2}\right) \pi$.
- Now'freeze' the wave at some instant in time t.
- The points where y has a maximum value will be those a distance x from the source, given by

$$
x=\left(\omega t+\phi-\left(n+\frac{1}{2}\right) \pi\right) / k \quad n \text { an integer. }
$$

- This is just the equation for circles (or spheres in three dimensions) centered on S.
- These circles are examples of wavefronts.
- If n not an integer, still get a wavefront, but not the crest of a wave.

WaveFronts and Huygen's wavelets

- Wavefronts for plane waves passing through a slit spread out as they pass through the opening:

- Can determine how are wave front moves through space by use of the Huygens-Fresnel construction
- Suppose that each point on a wavefront acts as a source of spherical wavelets (called Huygen's wavelets):
- These wavelets have the same frequency as the primary wave
- They have the same phase at their source as the primary wave
- They propagate at the same velocity as the primary wave.

Wavefront propagation via Huygen-Fresnel construction
 Initial wavefront

\square

Wavefront propagation via Huygen-Fresnel construction

Sources of Huygen's wavelets

$$
\begin{array}{llll}
\hline \hline \text { Semester } 12009 & \text { PHYS201 } & \text { Wave Mechanics } 53 / 86
\end{array}
$$

Wavefront propagation via Huygen-Fresnel construction

Adding in the wavelets from each source

$$
\text { Semester } 12009 \text { Wave Mechanics }
$$

Wavefront propagation via Huygen-Fresnel construction

Adding in the wavelets from each source

Wavefront propagation via Huygen-Fresnel construction

Adding in the wavelets from each source

Wavefront propagation via Huygen-Fresnel construction

Adding in the wavelets from each source

Wavefront propagation via Huygen-Fresnel construction

Leading edge of all the wavelets

Wavefront propagation via Huygen-Fresnel construction

Approximate form of new wavefront

Wavefront propagation via Huygen-Fresnel construction

Fitting the new wavefront

$$
\text { Semester } 12009 \text { Wave Mechanics }
$$

Wavefront propagation via Huygen-Fresnel construction

The new wavefront at last!

Wavefront propagation via Huygen-Fresnel construction

Huygen's wavelets sources

$$
\text { Semester } 12009 \text { Wave Mechanics }
$$

Wavefront propagation via Huygen-Fresnel construction

The wavelets

Wavefront propagation via Huygen-Fresnel construction

Leading edge of all the wavelets

Wavefront propagation via Huygen-Fresnel construction

Approximate form of new wavefront

Wavefront propagation via Huygen-Fresnel construction

Fitting the new wavefront

$$
\begin{array}{lll}
\hline \text { Semester } 12009 & \text { PHYS201 } & \text { Wave Mechanics } 66 / 86
\end{array}
$$

Wavefront propagation via Huygen-Fresnel construction

The next wavefront constructed ... and so on!

Implementing the Huygen-Fresnel construction

- Replace a wavefront by a collection of secondary sources of Huygen's wavelets.
- Treat each source as being of equal strength and equal phase
- Combine (i.e. add together) the amplitudes of the waves radiated by all of the sources
- Take the limit in which the number of sources is allowed to go to infinity
- The sources then continuously fill the whole of the wavefront.
- This usually means that the strength of each source also goes to zero, but in such a way that the total amplitude due to all the waves combined is finite.
- Note that this is an approximate procedure, but the Huygen's wavelets idea is basically sound.
- A full analysis of the propagation of waves shows that the amplitude of the wavelets is maximum in the forward direction, and falls to zero in the backward direction.
- So there are no waves propagating in the backward direction.

Fraunhofer diffraction through a narrow slit

- Shall apply the Huygen-Fresnel construction to analyse the diffraction of waves through a narrow slit in the Fraunhofer limit.

- The distance of the observation point P is \gg width of the slit and \gg the wavelength of the waves.
- The other extreme is known as Fresnel diffraction, and is much more complex.
- Shall assume there are M sources, all of amplitude a and separated by a distance

$$
d=\frac{b}{M-1}
$$

- From earlier work, the amplitude at P will be

$$
y(P)=a \sin \left(\omega t-k x+\frac{1}{2}(M-1) \delta^{\prime}\right) \frac{\sin \left(\frac{1}{2} M \delta^{\prime}\right)}{\sin \left(\frac{1}{2} \delta^{\prime}\right)}
$$

where $\quad \delta^{\prime}=\frac{2 \pi d}{\lambda} \sin \theta=\frac{2 \pi b}{\left(M_{-} 1\right) \lambda} \sin \theta$.

Fraunhofer diffraction through a narrow slit

- From the amplitude
the time averaged intensity will be

$$
y(P)=a \sin \left(\omega t-k x+\frac{1}{2}(M-1) \delta^{\prime}\right) \frac{\sin \left(\frac{1}{2} M \delta^{\prime}\right)}{\sin \left(\frac{1}{2} \delta^{\prime}\right)}
$$

$$
\bar{I}(P)=\frac{1}{2} a^{2} \frac{\sin ^{2}\left(\frac{1}{2} M \delta^{\prime}\right)}{\sin ^{2}\left(\frac{1}{2} \delta^{\prime}\right)}
$$

where

$$
\delta^{\prime}=\frac{2 \pi d}{\lambda} \sin \theta, \quad d=\frac{b}{M-1}
$$

- We want the limit as $M \rightarrow \infty$. The sources are then continuous along the wavefront.
- Need to look at the numerator and denominator separately
- $\sin ^{2}\left(\frac{1}{2} M \delta^{\prime}\right)=\sin ^{2}\left[\frac{2}{2} M \frac{2 \pi \sin \theta}{\lambda} \frac{b}{M-1}\right]$
- $\sin ^{2}\left(\frac{1}{2} \delta^{\prime}\right)=\sin ^{2}\left[\frac{\pi d}{\lambda} \sin \theta\right]$
$=\sin ^{2}\left[\frac{\pi b \sin \theta}{\lambda} \cdot \frac{M}{M-1}\right]$
$\rightarrow \sin ^{2}\left[\frac{\pi b \sin \theta}{\lambda}\right]$ as $M \rightarrow \infty$.
$=\sin ^{2}\left[\frac{\pi b}{\lambda} \sin \theta \cdot \frac{1}{M-1}\right]$
$\rightarrow\left(\frac{\pi b}{\lambda} \sin \theta\right)^{2} \cdot \frac{1}{M^{2}} \quad$ as $\quad M \rightarrow \infty$
- Recall, $\sin x \approx x$ if $x \ll 1$.

Fraunhofer diffraction through a narrow slit

- In the limit of infinitely many sources we find

$$
\bar{I}(P)=\lim _{M \rightarrow \infty} \frac{1}{2} a^{2} M^{2}\left(\frac{\sin \left(\frac{\pi b}{\lambda} \sin \theta\right)}{\frac{\pi b}{\lambda} \sin \theta}\right)^{2}
$$

- A slight problem:
- If a is held fixed, then as $M \rightarrow \infty$ the expression on the right hand side will diverge!
- But physically, the result has to be finite.
- So, the strength of each individual source of Huygen's wavelets must tend to zero as $M \rightarrow \infty$. In fact, we must have

$$
a \propto \frac{1}{M}
$$

- So put $\bar{I}_{0}=\lim _{M \rightarrow \infty} \frac{1}{2} a^{2} M^{2}$. (\bar{I}_{0} is a constant, but we do not know its meaning yet.)
- Finally,

$$
\bar{I}(P)=\bar{I}_{0} \frac{\sin ^{2} \alpha}{\alpha^{2}} \quad \text { with } \quad \alpha=\frac{\pi b}{\lambda} \sin \theta .
$$

Single slit diffraction pattern

- The diffraction pattern is given by

$$
\bar{I}(\alpha)=\bar{I}_{0} \frac{\sin ^{2} \alpha}{\alpha^{2}} \quad \text { with } \quad \alpha=\frac{\pi b}{\lambda} \sin \theta
$$

Structure of single slit diffraction pattern

- Maxima
- Can find the positions of the maxima by differentiation:

$$
\frac{d \bar{I}}{d \alpha}=2 \bar{I}_{0} \frac{\sin \alpha}{\alpha}\left(\frac{\cos \alpha}{\alpha}-\frac{\sin \alpha}{\alpha^{2}}\right)=0
$$

which gives $\tan \alpha=\alpha$.

- This has one obvious solution: $\alpha=0$. Since

$$
\lim _{\alpha \rightarrow 0} \frac{\sin \alpha}{\alpha}=1 \text { then } \bar{I}(0)=\bar{I}_{0}
$$

- Thus \bar{I}_{0} is the intensity of the central $\alpha=0$ peak of the diffraction pattern.

- But there are other maxima to be found by solving $\tan \alpha=\alpha$.
- This is a transcendental equation for which there is no exact solution.
- Easiest way of solving $\tan \alpha=\alpha$ is graphically.

Structure of single slit diffraction pattern
 Graphical solution for subsidiary maxima

- Obtain solution by plotting simultaneously $y=\alpha$ and $y=\tan \alpha$.

- The curves intercept at $\alpha=0$ and approximately at $\alpha \approx \pm\left(n+\frac{1}{2}\right) \pi, n=1,2,3, \ldots$.
- Since $\alpha=\frac{\pi b}{\lambda} \sin \theta$, maxima at

$$
b \sin \theta=0 \quad \text { and } \quad b \sin \theta \approx \pm\left(n+\frac{1}{2}\right) \lambda
$$

Structure of single slit diffraction pattern
 Intensity of maxima.

- The approximate maximum values follow
from $\bar{I}(P)=\bar{I}_{0}\left(\frac{\sin \alpha}{\alpha}\right)^{2}$ and are:
$\bar{I}_{\max }=\bar{I}_{0} \quad$ for $\quad \alpha=0$
and

$$
\begin{aligned}
& \approx \bar{I}_{0}\left(\frac{\sin \left(\left(n+\frac{1}{2}\right) \pi\right)}{\left(n+\frac{1}{2}\right) \pi}\right)^{2} \text { for } \alpha=\left(n+\frac{1}{2}\right) \pi \\
& =\bar{I}_{0} \frac{1}{\left(n+\frac{1}{2}\right)^{2} \pi^{2}} \\
& =\frac{4 \bar{I}_{0}}{(2 n+1)^{2} \pi^{2}}
\end{aligned}
$$

- The first subsidiary maximum at $\alpha= \pm 3 \pi / 2$ has an intensity of $\bar{I}_{\max }(n=1)=0.045 \bar{I}_{0}$ so it is 4.5% of the central peak.
- The intensity of subsequent peaks fall off rapidly as $1 / n^{2}$.

Structure of single slit diffraction pattern

- Minima

- Minima occur when $\bar{I}=0$ i.e.

$$
\begin{aligned}
& \bar{I}_{0}\left(\frac{\sin \alpha}{\alpha}\right)^{2}=0 \\
\Rightarrow & \sin \alpha=0
\end{aligned}
$$

- Exclude $\alpha=0$ - gives the central maximum.
- So minima occur at

$$
\begin{array}{rlrl}
\alpha & =m \pi, \quad m=\npreceq, \pm 1, \pm 2 \ldots \\
\therefore \quad \frac{\pi b}{\lambda} \sin \theta & =m \pi \\
& \text { or } \quad b \sin \theta & =m \lambda
\end{array}
$$

Beware: this looks like $d \sin \theta=n \lambda$, the equation for interference maxima.

- The first minima on either side of the central maximum occur at $b \sin \theta= \pm \lambda$
- Increasing the wavelength or decreasing the slit width makes the central maximum wider

Polar plot and observation screen diffraction pattern

- On observation screen a distance ℓ from the slit, have usual approximation

$$
z=\ell \tan \theta \approx \ell \sin \theta
$$

- So maxima occur at

$$
z \approx\left(n+\frac{1}{2}\right) \frac{\ell \lambda}{b} \quad n= \pm 1, \pm 2, \ldots
$$

- Minima at

$$
z \approx m \frac{\ell \lambda}{b} \quad m= \pm 1, \pm 2, \ldots
$$

- Figure on left for $b=3 \lambda$
- A polar plot of intensity as a function of angle θ for $b=3 \lambda$.
- weak subsidiary maxima at
$b \sin \theta= \pm\left(n+\frac{1}{2}\right) \lambda, n \neq 0$ i.e. $\sin \theta= \pm \frac{1}{2}, \pm \frac{5}{6}$
- Minima at $b \sin \theta=m \lambda, m \neq 0$ i.e. $\sin \theta= \pm \frac{1}{3}, \pm \frac{2}{3}, \pm 1$

The diffraction grating

- A diffraction grating (or transmission grating) consists of very many narrow, equally spaced, parallel slits.

- Constructed, for instance, by scratching many fine parallel lines on a sheet of glass.
- The region between the scratches is clear: form the slits of non-zero width
- The scratches themselves are opaque and determine the distance between slits.
- Light is passed through the grating, producing a pattern on an observation screen which is a combination of:
- The interference pattern due to the many slits separated by a distance d
- And the (unavoidable) diffraction pattern associated with the width b of each slit.

Calculation of diffraction grating interference pattern

- Pattern is calculated in two steps
- First calculate the amplitude of the waves at the observation point produced by one slit of width b
- This is the Huygen's wavelets single slit diffraction calculation just done.
- Find that the total amplitude produced by a single slit looks the same as that produced by a single source
- So the N slits are replaced by N single sources separated by a distance d
- Then we use our much earlier result for the interference pattern of N sources to get the final interference/diffraction pattern.

Calculation of diffraction grating interference pattern I

- The total amplitude at observation point P due to waves from the $n^{\text {th }}$ slit is, from earlier work:

$$
\begin{aligned}
& y_{n}(P)=a \frac{\sin \left(\frac{1}{2} M \delta^{\prime}\right)}{\sin \left(\frac{1}{2} \delta^{\prime}\right)} \sin \left(\omega t-k x_{n}-(M-1) \delta^{\prime} / 2\right) \\
& \text { where } \quad \delta^{\prime}
\end{aligned}=\frac{2 \pi b}{M-1} \sin \theta . \quad \text {. }
$$

- This is just the formula for a wave produced by a point source
- of amplitude $a \frac{\sin \left(\frac{1}{2} M \delta^{\prime}\right)}{\sin \left(\frac{1}{2} \delta^{\prime}\right)}$
- phase $(M-1) \delta^{\prime} / 2$
- and distance x_{n} from the observation point P.

Calculation of diffraction grating interference pattern II

- Each source has an amplitude $a \frac{\sin \left(\frac{1}{2} M \delta^{\prime}\right)}{\sin \left(\frac{1}{2} \delta^{\prime}\right)}$
- The $n^{\text {th }}$ source is a distance $x_{n}=x+n d \sin \theta$ from the point of observation P.
- This is exactly the set-up of N equidistant sources analyzed earlier.
- So the intensity of the waves produced by all the sources is

$$
\bar{I}(P)=\frac{1}{2} a^{2}\left(\frac{\sin \left(\frac{1}{2} M \delta^{\prime}\right)}{\sin \left(\frac{1}{2} \delta^{\prime}\right)}\right)^{2}\left(\frac{\sin \left(\frac{1}{2} N \delta\right)}{\sin \left(\frac{1}{2} \delta\right)}\right)^{2}
$$

- Taking the limit $M \rightarrow \infty$ as before then gives

$$
\bar{I}(P)=\bar{I}_{0}\left(\frac{\sin \alpha}{\alpha}\right)^{2}\left(\frac{\sin N \beta}{\sin \beta}\right)^{2} \quad \alpha=\frac{\pi b}{\lambda} \sin \theta \quad \text { and } \quad \beta=\frac{\pi d}{\lambda} \sin \theta
$$

Structure of diffraction pattern for diffraction grating

- The Fraunhofer intensity pattern produced by waves of wavelength λ incident on a grating of N slits, all of width b and a distance d apart is

$$
\begin{array}{rlll}
\bar{I}(P) & =\quad \bar{I}_{0}\left(\frac{\sin \alpha}{\alpha}\right)^{2} & \times & \left(\frac{\sin N \beta}{\sin \beta}\right)^{2} \\
& =\text { single slit diffraction pattern } & \times \quad N \text { slit interference pattern }
\end{array}
$$

Structure of diffraction pattern for diffraction grating

- The Fraunhofer intensity pattern produced by waves of wavelength λ incident on a grating of N slits, all of width b and a distance d apart is

$$
\begin{array}{rllc}
\bar{I}(P) & =\quad \bar{I}_{0}\left(\frac{\sin \alpha}{\alpha}\right)^{2} & \times \quad\left(\frac{\sin N \beta}{\sin \beta}\right)^{2} \\
& =\text { single slit diffraction pattern } & \times N \text { slit interference pattern }
\end{array}
$$

$$
\begin{aligned}
d & =4 b \\
N & =10
\end{aligned}
$$

Structure of diffraction pattern for diffraction grating

- The Fraunhofer intensity pattern produced by waves of wavelength λ incident on a grating of N slits, all of width b and a distance d apart is

$$
\begin{array}{rllc}
\bar{I}(P) & =\quad \bar{I}_{0}\left(\frac{\sin \alpha}{\alpha}\right)^{2} & \times \quad\left(\frac{\sin N \beta}{\sin \beta}\right)^{2} \\
& =\text { single slit diffraction pattern } & \times N \text { slit interference pattern }
\end{array}
$$

$$
\begin{aligned}
d & =4 b \\
N & =10
\end{aligned}
$$

Missing Fringes

- Recall the following features of interference and diffraction patterns:
- Maxima of the interference pattern occur when $d \sin \theta=n \lambda$
- Minima of the diffraction pattern occur when $b \sin \theta=m \lambda$
- If an interference maximum coincides with a diffraction minimum, then the interference maximum will be 'missing'.
- This will occur if the direction θ is both an interference maximum $d \sin \theta=n \lambda$ and a diffraction minimum $b \sin \theta=m \lambda$.
- Combining the two gives $\frac{d}{b}=\frac{n}{m}$.
- If $d / b=n_{0} / m_{0}$ where n_{0} and m_{0} are integers with no common factors, then
- any interference fringe $n=r n_{0}$ where r is an integer will coincide with the diffraction minimum $m=r m_{0}$
- Hence every $n_{0}{ }^{\text {th }}$ fringe will be missing.
- E.g. if $d / b=4 / 1$ then every fourth interference fringe will be missing (see previous graphs).
- If $d / b=3 / 2$ then every third fringe will be missing.

Missing fringes continued

